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Qui I’observent avec des regards familiers.
Charles Baudelaire, Les Fleurs du Mal
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Introduction

§0.1. The creators of the Lie theory viewed a Lie group as a group
of symmetries of an algebraic or a geometric object; the corresponding
Lie algebra, from their point of view, was the set of infinitesimal trans-
formations. Since the group of symmetries of the object is not necessarily
finite-dimensional, S. Lie considered not only the problem of classifica-
tion of subgroups of GL,,, but also the problem of classification of infinite-
dimensional groups of transformations.

The problem of classification of simple finite-dimensional Lie algebras
over the field of complex numbers was solved by the end of the 19th century
by W. Killing and E. Cartan. (A vivid description of the history of this
discovery, one of the most remarkable in all of mathematics, can be found
in Hawkins [1982].) And just over a decade later, Cartan classified simple
infinite-dimensional Lie algebras of vector fields on a finite-dimensional
space.

Starting with the works of Lie, Killing, and Cartan, the theory of finite-
dimensional Lie groups and Lie algebras has developed systematically in
depth and scope. On the other hand, Cartan’s works on simple infinite-
dimensional Lie algebras had been virtually forgotten until the mid-sixties.
A resurgence of interest in this area began with the work of Guillemin—
Sternberg [1964] and Singer-Sternberg [1965], which developed an adequate
algebraic language and the machinery of filtered and graded Lie algebras.
They were, however, unable to find an algebraic proof of Cartan’s clas-
sification theorem (see Guillemin—Quillen-Sternberg [1966] for an analytic
proof). This was done by Weisfeiler [1968], who reduced the problem to the
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b'e Introduction

classification of simple Z-graded Lie algebras of finite “depth” g= @ g;,
i2=d

where dim g; < oo and the go-module g_; is irreducible.

§0.2. At the present time there is no general theory of infinite-dimension-
al Lie groups and algebras and their representations. There are, however,
four classes of infinite-dimensional Lie groups and algebras that underwent
a more or less intensive study. These are, first of all, the above-mentioned
Lie algebras of vector fields and the corresponding groups of diffeomor-
phisms of a manifold. Starting with the works of Gelfand-Fuchs [1969],
[1970A,B], there emerged an important direction having many geometric
applications, which is the cohomology theory of infinite-dimensional Lie
algebras of vector fields on a finite-dimensional manifold. There is also a
rather large number of works which study and classify various classes of
representations of the groups of diffeomorphisms of a manifold. One should
probably include in the first class the groups of biregular automorphisms
of an algebraic variety (see Shafarevich [1981]).

The second class consists of Lie groups (resp. Lie algebras) of
smooth mappings of a given manifold into a finite-dimensional Lie group
(resp. Lie algebra). In other words, this is a group (resp. Lie algebra) of
matrices over some function algebra but viewed over the base field. (The
physicists refer to certain central extensions of these Lie algebras as current
algebras.) The main subject of study in this case has been certain special
families of representations.

The third class consists of the classical Lie groups and algebras of op-
erators in a Hilbert or Banach space. There is a rather large number of
scattered results in this area, which study the structure of these Lie groups
and algebras and their representations. A representation which plays an
important role in quantum field theory is the Segal-Shale-Weil (or meta-
plectic) representation of an infinite-dimensional symplectic group.

I shall not discuss in this book the three classes of infinite-dimensional
Lie algebras listed above, with the exception of those closely related to
the Lie algebras of the fourth class, which we consider below. The reader
interested in these three classes should consult the literature cited at the
end of the book.

Finally, the fourth class of infinite-dimensional Lie algebras is the class
of the so-called Kac—Moody algebras, the subject of the present book.

§0.3.  Let us briefly discuss the main concepts of the structural theory of
Kac-Moody algebras. Let A = (aij)7;=1 be a generalized Cartan matriz,
Le., an integral n x n matrix such that a;; = 2, a;; < 0fori # j, and a;; = 0
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implies a;; = 0. The associated Kac-Moody algebra g'(A) is a complex Lie
algebra on 3n generators e;, f, hi (i=1,...,n) and the following defining
relations (¢,j,= 1,...,n):

[hi ki1 =0, [ei, fil = hi, [es, f5]=0if i # ],
(0.3.1) [hi, €] = aije;, [hi, fi]l = —aijfj,

(ad e,')l""'iej =0, (adf.')l-a‘jfj =0ifi #j.
(The definition given in the main text of the book (see Chapter 1) is dif-
ferent from the above; it is more convenient for a number of reasons. The
proof of the fact that the derived algebra of the Lie algebra g(A) defined in
Chapter 1 coincides with the Lie algebra g/(A) defined by relations (0.3.1)
has been obtained by Gabber-Kac [1981] under a ”symmetrizability” as-
sumption; this proof appears in Chapter 9.)

I came to consider these Lie algebras while trying to understand and
generalize the works of Guillemin—Quillen-Singer-Sternberg—Weisfeiler on
Cartan’s classification. The key idea was to consider arbitrary simple Z-
graded Lie algebras g = @ g;; but since there are too many such Lie

j

algebras, the point was to require the dimension of g; to grow no faster
than some polynomial in j. (One can show that Lie algebras of finite
depth do satisfy this condition, and that this condition is independent of
the gradation.) Such Lie algebras were classified under some technical
hypotheses (see Kac [1968 B]). It turned out that in addition to Cartan’s
four series of Lie algebras of polynomial vector fields, there is another class
of infinite-dimensional Lie algebras of polynomial growth, which are called
affine Lie algebras (more precisely, they are the quotients of affine Lie
algebras by the 1-dimensional center). At the same time, Moody [1968]
independently undertook the study of the Lie algebras g’(A).

The class of Kac-Moody algebras breaks up into three subclasses. To
describe them, it is convenient to assume that the matrix A is indecom-
posable (i.e., there is no partition of the set {1,...,n} into two nonempty
subsets so that a;; = 0 whenever i belongs to the first subset, while j be-
longs to the second; this is done without loss of generality since the direct
sum of matrices corresponds to the direct sum of Kac-Moody algebras).
Then there are the following three mutually exclusive possibilities:

a) There is a vector 8 of positive integers such that all the coordinates of
the vector Af are positive. In such case all the principal minors of the
matrix A are positive and the Lie algebra g'(A) is finite-dimensional.

b) There is a vector § of positive integers such that A6 =0. In such case all
the principal minors of the matrix A are nonnegative and det A =0; the al-
gebra g/(A) is infinite-dimensional, but is of polynomial growth (moreover,
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it admits a Z-gradation by subspaces of uniformly bounded dimension).
The Lie algebras of this subclass are called affine Lie algebras.

c¢) There is a vector a of positive integers such that all the coordinates
of the vector Aa are negative. In such case the Lie algebra g’(A) is of
exponential growth.

The main achievement of the Killing—Cartan theory may be formulated
as follows: a simple finite-dimensional complex Lie algebra is isomorphic
to one of the Lie algebras of the subclass a). (Note that the classification
of matrices of type a) and b) is a rather simple problem.) The existence
of the generators satisfying relations (0.3.1) was pointed out by Chevalley
[1948] and Harish—Chandra [1951]. (Much later Serre [1966] and Kac [1968
B] showed that these are defining relations.)

It turned out that most of the classical concepts of the Killing—Cartan-
Weyl theory can be carried over to the entire class of Kac-Moody algebras,
such as the Cartan subalgebra, the root system, the Weyl group, etc. In
doing so one discovers a series of new phenomena, which the book treats in
detail (see Chapters 1-6). I shall only point out here that g’(A) does not
always possess a nonzero invariant bilinear form. This is the case if and
only if the matrix A is symmetrizable, i.e., the matrix DA is symmetric for
some invertible diagonal matrix D (see Chapter 2).

§0.4. It is an important property of affine Lie algebras that they pos-
sess a simple realization (see Chapters 7 and 8). Here I shall explain this
realization for the example of the Kac—-Moody algebra associated to the ex-
tended Cartan matrix A of a simple finite-dimensional complex Lie algebra
8. (All such matrices are “affine” generalized Cartan matrices; the corre-
sponding algebra g’(A) is called a nontwisted affine Lie algebra.) Namely,
the affine Lie algebra g’'(A) is a central extension by the 1-dimensional
center of the Lie algebra of polynomial maps of the circle into the simple
finite-dimensional complex Lie algebra g (so that it is the simplest example
of a Lie algebra of the second class mentioned in §0.2).

More precisely, let us consider the Lie algebra g in some faithful finite-
dimensional representation. Then the Lie algebra g’(A) is isomorphic to
the Lie algebra on the complex space (C[t,t~!]®c g) @ Cc with the bracket

[(t™ ®a) ® Ac, (1" @ b) @ pc] = (t™*" @ [a,b]) ® My, —n(trad)c,

so that Cc is the (1-dimensional) center. This realization allows us to study
affine Lie algebras from another point of view. In particular, the algebra
of vector fields on the circle (the simplest algebra of the first class) plays
an important role in the theory of affine Lie algebras.
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Note also that the Lie algebras of the fourth class are closely related to
the affine Lie algebras of infinite rank, considered in Chapters 7 and 14.

Unfortunately, no simple realization has been found up to now for any
nonaffine infinite-dimensional Kac—-Moody algebra. This question appears
to be one of the most important open problems of the theory.

§0.5. An important concept missing from the first works in Kac-Moody
algebras was the concept of an integrable highest-weight representation
(introduced in Kac [1974]). Given a sequence of nonnegative integers A =
(A1, --,An), the integrable highest-weight representation of a Kac-Moody
algebra g/(A) is an irreducible representation 75 of g’(A) on a complex
vector space L(A), which is determined by the property that there is a
nonzero vector vy € L(A) such that

WA(E;)UA =0 and WA(hg)vA = /\."v,\ (i = 1,.. .,Tl).

(This terminology is explained by the fact that A is called the highest-
weight, and the conditions on A are necessary and sufficient for being able
to integrate w5 and obtain a representation of the group.)

Cartan’s theorem on the highest-weight asserts that all the represen-
tations w5 of a complex simple finite-dimensional Lie algebra are finite-
dimensional, and that every finite-dimensional irreducible representation is
equivalent to one of the m,.

That the representations 7 are finite-dimensional (the most nontrivial
part of Cartan’s theorem) was proved by Cartan by examining the cases,
one by one. A purely algebraic proof was found much later by C. Chevalley
[1948] and Harish and Chandra [1951] (a “transcendental” proof had been
found earlier by H. Weyl). This brief note by Chevalley appears in retro-
spect as the precursor of the algebraization of the representation theory of
Lie groups. This note also contains, in an embryonic form, many of the
basic concepts of the theory of Kac—-Moody algebras.

The algebraization of the representation theory of Lie groups, which has
undergone such an explosive development during the last decade, started
with the work Bernstein—Gelfand-Gelfand [1971] on Verma modules (the
first nontrivial results about these modules were obtained by Verma [1968]).
In particular, using the Verma modules, Bernstein—Gelfand-Gelfand gave
a transparent algebraic proof of Weyl’s formula for the characters of finite-
dimensional irreducible representations of finite-dimensional simple Lie
algebras.

At about the same time Macdonald [1972] obtained his remarkable iden-
tities. In this work he undertook to generalize the Weyl denominator
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identity to the case of affine root systems. He remarked that a straight-
forward generalization is actually false. To salvage the situation he had to
add some “mysterious” factors, which he was able to determine as a result
of lengthy calculations. The simplest example of Macdonald’s identities is
the famous Jacobi triple product identity:

H(l —u"o")(1 — u1") (1 — u”o )
n>1
- Z(_l)mu%m(m+l)v§m(m—l).
nel

The “mysterious” factors which do not correspond to affine roots are the
factors (1 — u"v™).

After the appearance of the two works mentioned above very little re-
mained to be done: one had to place them on the desk next to one another
to understand that Macdonald’s result is only the tip of the iceberg—the
representation theory of Kac-Moody algebras. Namely, it turned out that
a simplified version of Bernstein—-Gelfand—Gelfand’s proof may be applied
to the proof of a formula generalizing Weyl’s formula, for the formal char-
acter of the representation w5 of an arbitrary Kac-Moody algebra g’'(A)
corresponding to a symmetrizable matrix A. In the case of the simplest
1-dimensional representation mg, this formula becomes the generalization
of Weyl’s denominator identity. In the case of an affine Lie algebra, the
generalized Weyl denominator identity turns out to be equivalent to the
Macdonald identities. In the process, the “mysterious” factors receive a
simple interpretation: they correspond to the so-called imaginary roots
(i.e., roots that one should add to the affine roots to obtain all the roots of
the affine Lie algebra). Note that the simplest example of the Jacobi triple
product identity turns out to be just the generalized denominator identity
57)

The exposition of these results (obtained by Kac [1974]) may be found
in Chapter 10. Chapters 9-14 are devoted to the general theory of highest-
weight representations and their applications.

The main tool of the theory of representations with highest-weight is the
generalized Casimir operator (see Chapter 2). Unfortunately, the construc-
tion of this operator depends on whether the matrix A is symmetrizable.
The question whether one can lift the hypothesis of symmetrizability of the
matrix A remains open.

Once the integrable highest-weight representations had been introduced,
the theory of Kac-Moody algebras got off the ground and has been devel-
oping since at an accelerating speed. In the past decade this theory has

for the affine Lie algebra corresponding to the matrix (
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emerged as a field that has close connections with many areas of mathe-
matics and mathematical physics, such as invariant theory, combinatorics,
topology, the theory of modular forms and theta functions, the theory of
singularities, finite simple groups, Hamiltonian mechanics, soliton equa-
tions, and quantum field theory.

§0.6. This book contains a detailed exposition of the foundations of
the theory of Kac—-Moody algebras and their integrable representations.
Besides the application to the Macdonald identities mentioned above (Chap-
ter 12), the book discusses the application to the classification of finite-
order automorphisms of simple finite-dimensional Lie algebras (Chapter
8), and the connection with the theory of modular forms and theta func-
tions (Chapter 13). The last chapter (Chapter 14) discusses the remarkable
connection between the representation theory of affine Lie algebras and the
Korteweg—de Vries-type equations, discovered by the Kyoto school.

A theory of Lie algebras is usually interesting, insofar as it is related to
group theory, and Kac-Moody algebras are no exception. Recently there
appeared a series of deep results on groups associated with Kac-Moody
algebras. A discussion of these results would require writing another book.
I chose to make only a few comments regarding this subject at the end of
some chapters.

§0.7.  Throughout the book the base field is the field of complex num-
bers. However, all the results of the book, except, of course, for the ones
concerning Hermitian forms and convergence problems, can be extended
without difficulty to the case of an arbitrary field of characteristic zero.

§0.8.  Motivations are provided at the beginning of each chapter, which
ends with related bibliographical comments. The main text of each chapter
is followed by exercises (whose total number exceeds 250). Some of them
are elementary, others constitute a brief exposition of original works. I
hope that these expositions are sufficiently detailed for the diligent reader
to reconstruct all the proofs. The square brackets at the end of some
exercises contain hints for their solution.

The exposition in the book is practically self-contained. Although I had
in mind a reader familiar with the theory of finite-dimensional semisimple
Lie algebras, what would suffice for the most part is a knowledge of the
elements of Lie algebras, their enveloping algebras and representations. For
example, the book of Humphreys [1972] or Varadarajan [1984] is more than
sufficient.
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One finds a rather extensive bibliography at the end of the book. I hope
that the collection of references to mathematical works in the theory of
Kac—Moody algebras is at least everywhere dense. This is not at all so
in the case of the works in physics. The choice of references in this case
was rather arbitrary and often depended on whether I had a copy of the
paper or discussed it with the author. The same should be said as regards
the references to the works on the other classes of infinite-dimensional Lie
algebras.

§0.9. This book is based on lectures given at MIT in 1978, 1980, and
1982, and at the Collége de France in 1981. I would like to thank those
who attended for helpful comments and corrections of the notes, in partic-
ular F. Arnold, R. Coley, R. Gross, Z. Haddad, M. Haiman, G. Heckman,
F. Levstein, A. Rocha, and T. Vongiouklis. I am grateful to M. Duflo,
G. Heckman, B. Kupershmidt, and B. Weisfeiler for reading some parts of
the manuscript and pointing out errors. I apologize for those errors that re-
main. My thanks go to F. Rose, B. Katz, and M. Katz without whose help
and support this book would never have come out. I also owe thanks to
K. Manning and C. Macpherson for help with the language. The book was
prepared using D. Knuth’s TgX. Finally, I would like on this occasion to
express my deep gratitude to D. Peterson, whose collaboration had a great
influence not only on this book, but also on most of my mathematical work
in the past few years.

The author was supported in part by a Sloan foundation grant and by
grants from the National Science Foundation.

July 1983, L’Isle Adam, France.

Preface to the Second Edition

The most important additions reflect recent developments in the theory
of infinite-dimensional groups (some key facts, like Proposition 3.8 and
Exercise 5.19 are among them) and in the soliton theory (like Exercises
14.37-14.40 which uncover the role of the Virasoro algebra). The most im-
portant correction concerns the proof of the complete reducibility Propo-
sition 9.10. The previous proof used Lemma 9.10 b) of the first edition
which is false, as Exercise 9.15 shows. A correct version of Lemma 9.10 b)
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is the new Proposition 10.4 which gives a characterization of integrable
highest-weight modules.

In addition to correcting misprints and errors and adding a few dozen
of new exercises, I have brought to date the list of references and related
bibliographical comments. I want to thank those who have pointed out er-
rors and suggested improvements, in particular: J. Dorfmeister, T. Enright,
D. Freed, E. Getzler, E. Gutkin, P. de la Harpe, S. Kumar, B. Kupershmidt,
S-R. Lu, D. Peterson, L.-J. Santharoubane, G. Schwarz, V S. Varadara-
jan, M. Wakimoto, Z.-X. Wan, X.-D. Wang, Y.-X. Wang, B. Weisfeiler,
C.-F. Xie, Y.-C. You, H.-C. Zhang.

April 1985, Cambridge, Massachusetts.

Preface to the Third Edition

This edition differs considerably from the previous ones. Particularly, more
emphasis is made on connections to mathematical physics, especially to
conformal field theory.

Below is a list of the most important improvements and additions:

Chapter 3. A simplest example of a quantized Kac-Moody algebra,
U,y (sl3), is given, along with its representations (Exercises 3.23 and 3.34).

Chapter 5. The hyperbolic Weyl group theory is applied to the study of
the unimodular Lorentzian lattices of rank < 10 (§5.10).

Chapter 6. An explicit construction of all finite type root and coroot
lattices is given, along with the associated Weyl group, root systems, etc.
(§6.7).

Chapter 7. The field theoretic approach to affine algebras is briefly
outlined (§7.7). An explicit construction of all simple finite-dimensional Lie
algebras is given in terms of the root lattice and an “asymmetry function”
on it (§§7.8-7.10).

Chapter 8. A simple and self-contained proof is given of the basic fact
about twisted affine algebras: the equivariant loop algebra £(g, o, m) de-
pends only on the connected component of Aut g containing o (§8.5).

Chapter 9. Elements of the representation theory of the Virasoro alge-
bras are discussed (§9.14). A free field construction of representations of
the Virasoro algebra and the affine algebra of type Agl) is given (Exercises
9.17-9.20).

Chapter 11. Unitarizability of representations of the Virasoro algebra is
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discussed (§11.12). A theory of generalized Kac—Moody algebras is outlined
(§11.13).

Chapter 12. The Sugawara construction and the coset construction,
which are the basic constructions of conformal field theory, are explained.
The general branching functions and vacuum pairs are introduced in this
context (§§12.8-12.13).

Chapter 13. General branching functions are studied along with string
functions. The matrix S of the modular transformations of characters is
studied (this was implicit in earlier editions). Explicit estimates of the
orders of all poles and of levels of branching functions are given. Asymp-
totics of characters and branching functions at high temperature limit is
studied, along with the related positivity conjecture. The interplay be-
tween the modular and conformal invariance constraints is demonstrated
(§§13.8-13.14). This is used to study unitarizable representations of the
Virasoro algebra, and to calculate the fusion rules (Exercises 13.18-13.26,
and 13.34-13.36).

Chapter 14. The homogeneous vertex operator construction is derived
via the vertex operator calculus (§14.8). The infinite wedge representation
is constructed (§14.9). By making use of the boson-fermion correspondence
(§14.10) the whole K P hierarchy is studied (§§14.11 and 14.12). By mak-
ing use of the principal and homogeneous vertex operator constructions of
A{D, the whole KdV and NLS hierarchies are described (§14.13). The
BK P hierarchy is constructed (Exercises 14.13-14.15). A theory of the
infinite Grassmannian and flag manifold is sketched and their connection
to the KP and MKP hierarchies is explained (Exercises 14.32, 14.33).
A pseudodifferential operator approach to the K P and KdV hierarchies is
outlined (Exercises 14.44-14.51). A basis free theory of the Lie algebra and
group of type Ay is discussed (Exercises 14.55-14.58), and some classical
theorems of the theory of algebraic curves are derived from this discussion
(Exercises 14.59-14.63).

In addition to correcting misprints and errors and adding some hundred
new exercises, I have brought up to date the list of references and related
bibliographical comments. The explosion of activity in the field between the
second and the third editions, due to a great extent to physicists working
in string theory and conformal field theory, made it an impossible task
to compile a reasonably complete bibliography. I hope, however, that the
collection of references compiled for this edition at least reflects all the
major directions of research in the field. Needless to say that every sentence
of my bibliographical comments could be prefixed by an “It is my opinion
that ....”
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I want to thank those who have pointed out errors and suggested im-

provements, in particular:
R. Borcherds, J. Dixmier, D.Z. Djokovic, E. Frenkel, S. Friedberg, M.-J.
Imbens, R. Iyer, R. C. King, M.F.R. Kruelle, J. van de Leur, S-R. Lu, P.

Magyar, G. Rousseau, G. Seligman, M. Wakimoto, Z.-X. Wan, Y .-C. You.

September 1989, Newton, Massachusetts.
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Notational Conventions

the set of integers

the set of non-negative integers

the set of positive integers

the set of rational numbers

the set of real numbers

the set of non-negative real numbers
the set of complex numbers

the set of invertible elements of a ring S
real and imaginary parts of z € C
for z € C* : €'°8% = 7 and
—m<Imlogz <=

=e*182 for « € C, z € CX

direct sum of vector spaces
sum of subspaces of a vector space

direct product of vector spaces

the linear k-span of S (k =2,Z,,Q,R,

or C)

tensor product of vector k-spaces over

k (k=Q,R,or C)

the dual of a vector k-space over

k (k=Q,R, or C)

direct sum of n copies of the vector space
k(n€eZ;uU{c})

the identity operator on the n-dimensional
vector space V

pairing between a vector space and its dual
square length of a vector u

cardinality of a set S

a set of representatives of cosets of an
abelian group P with respect to a

subgroup @



