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UNCONDITIONAL CONVERGENCE OF HIGH-ORDER
EXTRAPOLATIONS OF THE CRANK-NICOLSON, FINITE
ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS

ROSS INGRAM

Abstract. Error estimates for the Crank-Nicolson in time, Finite Element in space (CNFE) dis-
cretization of the Navier-Stokes equations require application of the discrete Gronwall inequality,
which leads to a time-step (Af) restriction. All known convergence analyses of the fully dis-
crete CNFE with linear extrapolation rely on a similar At-restriction. We show that CNFE with
arbitrary-order extrapolation (denoted CNLE) is convergences optimally in the energy norm with-
out any At-restriction. We prove that CNLE velocity and corresponding discrete time-derivative
converge optimally in l“‘(Hl) and 12(L?) respectively under the mild condition At < MAY/? for
any arbitrary M > 0 (e.g. independent of problem data, h, and At) where i > 0 is the maximum
mesh element diameter. Convergence in these higher order norms is needed to prove convergence
estimates for pressure and the drag/lift force a fluid exerts on an obstacle. Our analysis exploits
the extrapolated convective velocity to avoid any At-restriction for convergence in the energy
norm. However, the coupling between the extrapolated convecting velocity of usual CNLE and
the a priori control of average velocities (characteristic of CN methods) rather than pointwise
velocities (e.g. backward-Euler methods) in (?(H') is precisely the source of At-restriction for
convergence in higher-order norms.

Key words. Navier-Stokes, Crank-Nicolson, finite element, extrapolation, linearization, error,
convergence, linearization

1. Introduction

The usual Crank-Nicolson (CN) in time Finite Element (FE) in space discretiza-
tion of the Navier-Stokes (NS) Equations (NSE) denoted by CNFE is well-known to
be unconditionally (energetically) stable. The error analysis of the CNFE method
is based on a discrete Gronwall inequality which introduces a time-step (At > 0)
restriction (for convergence, not for stability) of the form

At < C(Re,h), g At < O(Re™) (1)

(see Appendix A for a derivation, Theorem A.1 with e.g. (157)). Here h > 0 is the
maximum mesh element diameter and Re > 0 is the Reynolds number. Condition
(1)(a) implies conditional convergence whereas (1)(b) is a robustness condition and
both are prohibitively restrictive in practice; for example, (lafhbg snggests

Re = 100 (low-to-moderate value) = & m@‘i) N

Consequently, an importast-open ques,tmards VWlGWL&Q)dﬁQ;}' f(aﬂ;i
e an artifact of iﬁ(pcrﬁk’tﬁmqthcmettlca]\‘lech Hquég o
e a special featie of the C¥xtime distrofizatibs

—_— \
Received by the editors July 72831 andl in-rgge6d form, Decé‘%@;ml
2000 Mathematics Subject Classification. 35L70, 65N30.
This work was partially supported by National Science Foundation Grafit-P¥wston of Mathematical
Sciences 080385.
257



258 R. INGRAM

We consider the necessity of a At-restriction in a linear, fully implicit variant of
CNFE obtained by extrapolation of the convecting velocity w: for example, sup-

pressing spatial discretization, given u’, u', and p', for each n = 1.2,... find
velocity u*! and pressure p"*! satisfying
un+l —u" 3 1 un+1 +un
& U ) VT
_ﬂR(,—lAu‘;’JA +ull N vpn—l-l +])rz - fn+l -|—f" (2)
V. uu-l-l =:() ) 2 2
Here f is body-force term, and z' := z(r,t') and t* = iAt. This method is often

called CNLE and was first studied by Baker [3]. CNLE is linearly implicit, uncon-
ditionally (energetically) stable, and second-order accurate. In this report, we show
that no At-restriction is required for the convergence of CNLE (Proposition 3.1,
Theorem 3.5). In particular,

lerror(CNLE)||js (L2yriz(ay < C(h* + At?), k = degree of FE space

(Theorem 3.5). This result was proved for the semi-discrete case as At — 0 in [10]
and the fully discrete Backward Euler (BE) scheme with Constant Extrapolation
(BECE) in [32]. The analysis depends on
e Gronwall inequality - exploit time-lagged convecting velocity (Section 1.1)
e Estimate (74) - bound convecting velocity in L? (Section 1.1.1)

Indeed, for extrapolated CN, we apply a discrete Gronwall Lemma without any At-
restriction; for general extrapolations we derive and apply the estimate (74)(h) of
the explicitly skew-symmetric convective term. We explain our strategy for proving
the CNLE error estimate and corresponding difficulties in detail in Section 1.1.
We also prove convergence estimates in higher-order norms. We show that the
CNLE velocity approximation converges optimally in the [*°(H!)-norm and the
corresponding discrete time-derivative of the velocity approximation converges op-
timally in the [?(L?)-norm (Theorems 3.8, 3.10) under a modest At-restriction

At < MhYY,  for any M > 0 (no Re-dependence). (3)

Note that A is completely arbitrary so that (3) only governs the rate at which
At — 0 and not the size of At. In particular, restriction (3) is not a typical artifact
of the discrete Gronwall inequality since it does not depend problem data. The
error estimate is obtained by a bootstrap argument that utilizes the error in the
energy norm. Although such estimates have been proved for BECE in [32], the
analysis of CNLE is distinctly different because CN methods only give a priori
control of average velocities u™t1/2 rather than pointwise velocities u”*! (e.g. BE
methods) in 12(H'). Our analysis depends on

e BEstimate (75) - bound test-function of convective term in L? (Section 1.1.1)

e CN a priori estimates - introduct” At-restriction (3) (Section 1.1.2)

e Stokes projection - preserve optimal convergence rate (Section 1.1.3).
Indeed, we derive and apply estimate (75)(b) of the explicitly skew-symmetric con-
vective term; we obtain intermediate estimates in the convergence analysis of CNLE
with limited options corresponding to limited control of average velocities (charac-
teristic of CN methods) in [?(H'); and we exploit the Stokes projection to preserve
the optimal convergence rate for the FE and CN discretization.
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It is a source of current research to determine whether (3) is strictly necessary
and to develop linear, implicit variants of usnal CNLE (2)(a) that are guaranteed to
avoid (3). Indeed, the extrapolated convecting velocity in (2)(a) is the source of At-
restriction for convergence in > (H'). Moreover, higher-order extrapolations reduce
the modeling error of extrapolation. Consequently, we investigate the arbitrary-
order extrapolation herein: for some ng > 0 and a; > 0 for 0 <7 < ng, consider

un+l 4+ u”

¥ un+l 4 u'u-H 4+ u” g B
/ \Y% v [ (aqgu" 4+ ...+ aput")  Ve—e——— - v

2 2 2

We consider the important case when the nonlocal compatibility condition is not
satisfied (addressed by Heywood and Rannacher in [19,20] and more recently, e.g.,
by He in [12,14] and He and Li in [15,16]). Suppose, for example, that p® be the
solution of (well-posed) Newmann problem

Ap' =V (fO —u’ . vu'), in Q, ’

{ V]JU . ﬁ|¢’)(2 o (Au(J + fu — ull . vu()) . ﬁl{)ﬂ- ( )

In order to avoid the accompanying factor min {t‘ 1, 1} in the estimates presented in

Section 3, the following compatibility condition is necessarily required (e.g. see [19],

Corollary 2.1):

V})Ulg)gz = (Au” + 7 — Y. Vu")|,-m. (5)

Replacing (4) with (4)(a), (5) defines an overdetermined Neumann-type problem.

Condition (5) is a nonlocal condition relating u” and fY. Condition (5) is satisfied

for several practical applications including startup from rest with zero force, u’ = 0,

f" = 0. In general, however, condition (5) cannot be verified. In this case, it is
shown that, e.g.. [w(-.1)[1, [Ju(-.t)||]z = < ast — 0F.

In Section 1.1, we provide an overview of CN time-stepping schemes for NSE
approximation and explain our methodology for CNLE convergence analysis and
corresponding improved estimates. We provide the mathematical setting for CNLE
in Section 2 for both the continuous and discrete function spaces (Section 2.1). In
Section 2.2, we compile the fundamental estimates and assumptions of the FE space
and extrapolated convecting velocity. Section 3 contains the main results of our
report. Section 4 contains the proofs of these results. In Section 3.2, we compile the
fundamental approximations and identitics required for our error analysis. Section
3.3 is devoted to analysis of the trilinear convective term and the explicitly skew-
synunetric convective term used in CNLE. In Section 3.4, we present the elliptic
and Stokes projections.

1.1. Remark on improved estimate. The key difference between our conver-
gence proof for CNLE and that of CNFE is the resulting intermediate estimate: for
approximations U} and constants £" > 0),

N

CNFE = [[UN][* +... <> s"JURI2 + ... (6)
n=>0
N-=1

CNLE = |[UF [P +...< Y w"|[UR|F +.... (7)
n=0

Notice that the term [[UY|[? is included in the right-hand-side of (6), but not of (7).
Estimates of the form (6) require a discrete Gronwall inequality (Lemma 3.14) to
proceed, which is the source of a At-restriction. Conversely, estimates of the form
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(7) allow application of an alternate discrete Gronwall inequality (Lemma 3.15),
which does not require a Af-restriction.

1.1.1. Key estimate for CNLE error analysis. The key difficulty resolved in
our CNLE proof (resulting in suboptimal results reported in previous error analyses)
is associated with the extrapolated convecting velocity %u" — %u"‘l. Once again

consider the error equation for CNLE:
n+1 n
Uh + U/l
2

n
3. 1. Uttt + Uy :
=At2/(§ h—5Un 1)-Vu-%+.... (8)
n

IUN|>+ Re™'At) ||V 12 +...

To derive an a priori estimate from (8), each U? from the right-hand side must be
p . h g
absorbed into the left-hand side. However, 3U”? — 1U?"! cannot be written as a
2%~h 2 -h .
; U“‘ U"
sum of averages. Indeed, suppose that U} = —U}*! % 0 so that ||V—L'%H =0
whereas ||[VU?*!|| > 0. Then, in this case, it is impossible to absorb any factor
h p Yy
n+1 n
37N lyn—1y(|2 5 U, " +UL 2 vrooed
of 3>, IIV(5UR — 53U )[]* > 0 into ng- ||V—L——2[]* = 0. To proceed from
(8) requires care so that only L*-norms of 2U7 — 1U~" are introduced when ma-
jorizing the right-hand side. Indeed Y, #n|[U}||* can be absorbed via the discrete
Gronwall Lemma. Assuming that u € H?, the key estimate to prove is

v||g2||W|lg1-r Yue H", ve H>, we H'™"

|Ch.(us v, W)l S O| ’U.| |Hr

for some C' > 0 and r = 0 and 1 where ¢j(u,v,w) = %(u Vv, w) — 3(u-Vw,v)
is the explicitly skew-symmetric convective term (see estimates (74)(b), (75)(b)).

1.1.2. Introduction of At-restriction (3). It is illuminating to introduce the
BE scheme to highlight the difficulty in convergence estimates for CN schemes in
higher order norms. Let i = 1 for BE and i = 2 for CN. Write 2" 71/2 = (2" +2")
and

/ w gt ey / £ (u)-Vu" iy, €7 (u) i= agu . . A2, u" . (9)

Note that £"(u) = u" and £"(u) = %u"‘ — %u"_l in (9) for BECE and CNLE
respectively. The energy difference due to the numerical extrapolation (9) is the
source of the At-restriction (3) for CNLE. Indeed, BECE velocities are shown to
converge unconditionally in [*°(H") (see e.g. [32]). Let e represent the fully discrete
velocity error for CNLE or BECE. We show herein for CNLE (and it is known for
BECE) that

max |e"|| + (Re™'At Y ||[Ve" /¥ < C(h¥ + At) (10)
n

for some C' > 0 without any At-restriction. The key difference between our con-
vergence proof for CNLE and that for BECE is the resulting error equation: for
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approximations U},

1 N (12 Ut -up
Re |VUY ||? + At B e |
VORI + At Y || =211 +
. o Ut -y
At e" Vet L — R BECE
| ot N
= en+l +e71 U"+1 o n
At e" ).V h+... CNLE
Z / )V AL
Estimate (10) gives us a priori control in [?(H') of two terms e”, e"*! in (11)(a).
However, we only have a priori control of %(e’“rl -+e™) in (11)(b) since ie ée”‘l
cannot be written as a sum of averages. Indeed, suppose that e” = —e" ! £ (.
T+1 rn
Then HVe ki 5+~ || = 0 whereas ||[Ve" || > 0. In this case it is unposslble to bound
YL lV(Zen — 2 e 1)||? > 0 above by any factor of 3 HV#H2 = 0. The

remaining term in (11)(a) and 2 terms in (11)(b) must be absorbed to the left-hand

side of the estimate or with the Gronwall Lemma. The limited control of the CNLE

Ve B ntl  n yUrttt_gyn ¢
term [(3e" — len—1). yete . —n b leads to the restriction (3).

1.1.3. Preserving optimal convergence rate in [ (H!'). We utilize the Stokes
projections (79) in the convergence analysis of Theorems 3.8, 3.10. The Stokes pro-
jection requires additional regularity of the pressure p, but is necessary to establish
the optimal convergence rate for velocity in (> (H') reported in Theorem 3.10. The
crucial estimate involves the error in the pressure: for each n > 0, fix (j,’f“ a pntl
and Uyt € H} so that

n+1 n
PR £ StV (e [\ A A ]
p —q V.—2—8)<

([ I ) At h) = U71+l n
HP”_H q}7+lH H h hH

(12)

The ﬁrs‘r option in (12) must be avoided, because we have no a priori control of
g ; . . .

||V - —"H The second option (12) is applicable, but ultimately leads to a

suboptimal error estimate. Indeed, approximation theory for FE functions suggests

lp" = @ o < CREFE™, s = degree of FE space (13)

for some C' > 0 so that a factor of h is lost in the case m = 1. Alternatively, let

(V;;-H ]l':+1) (w1 p"t1) be the Stokes projection. Then

n—+1 n n+1 n
Uh _ Uh. _ Uh

Re Y (V(u"t! -, v ) hy— (! —gitl v. i L) = 0. (14)

Identity (14) eliminates the need to bound (12). Instead, the error is shifted to the
time derivative of the Stokes projection and requires

n+1 d;:+1) o
At

for some C' > 0.
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1.2. Overview of CN schemes. There are many analyses of CN time-stepping
methods for the NSE. Heywood and Rannacher [20] provide a well-cited and com-
prehensive analysis of CNFE. The 2nd and 3rd order CNLE methods are intro-
duced and analyzed in [3,4]. Numerous error analyses of CNLE have been provided
since: e.g. multilevel based CNLE [18,21]. LES turbulence modeling [6], stochastic
CNLE [7], and a stabilized CNLE method [24]. Each of these analyses requires,
explicitly stated or implicitly, a At-restriction of the form (1) to guarantee con-
vergence.  For instance, in [6], the first Gronwall Lemma 3.14 must be applied
with At-restriction (p. 223) since Equation (4.11) includes the pertinent term up
to and including the current time-step (see 4th-term on RHS of Equation (4.11)).
The convergence analysis in [12-17] requires At < ep or At < ep|logh|~!. Con-
vergence estimates for fully-discrete BECE is derived and family of semi-discrete
multi-step CNLE-type methods are derived in [32] and [10] respectively. Concur-
rent to our work, the authors of [26] correctly perform the convergence analysis in
energy norni, but not in higher-orders and do not consider general case when the
nonlocal compatibility condition (4), (5) is not satisfied.

Applications of CNLE are also widespread: e.g. stability analysis of NSE and
MHD equations with CNLE in [2], a st order CNLE applied in conjunction with a
coupled multigrid and pressure Schur complement scheme for the NSE is proposed
in [23], a velocity-vorticity formulation of CNLE analyzed in [29], and the NS-a/NS-
w regularization method with CNLE [25]. The CN method is also applied. for exam-
ple, to a general class of non-stationary partial differential equations encompassing
reaction-diffusion type equations including the nonlinear Sobolev equations [28] and
the Ginzburg-Landau model [22]. Time-step restrictions of type (1)(h) (where RRe
has a different meaning) are implicitly required in the convergence analyses of these
discrete models.

A CN/Adams-Bashforth (CN-AB) time-stepping, scheme is another linear vari-
ant of CNFE. Unlike CNLE, CN-AB is explicit in the nonlinearity and only con-
ditionally stable [17] (i.e. a At-restriction of form (1)(a) is required for stability).
CN-AB is a popular method for approximating NS flows because it is fast and easy
to implement. Each time-step requires only one discrete Stokes system and linear
solve. For example, CN-AB is used to model turbulent flows induced by wind tur-
bine motion [31], turbulent flows transporting particles [27], and reacting flows in
complex geometries (e.g. gas turbine combustors) [1].

Lastly, the compatibility condition (4), (5) is not satisfied in general, see [20] for
an overview of this problem. When the (4), (5) is not satisfied, we have limited
regularity that greatly restricts convergence analysis of high-order methods (both
in time and space), e.g. sz)u ¢ L*(H'). Corresponding regularity in the case that
(4), (5) is satisfied is assumed the analyses of [3,4,6,7,10,24,26,32]. See [12, 14
16,19, 20, 30] for a rigorous treatment of the general case when the compatibility
condition is not satisfied. We also provide details herein.

2. Problem formulation

Let a := (ag,ai. ..., ap,) € R™ ! for some ng € {0} UN be equipped with the
standard {7 norm denoted by |al, for 1 < ¢ < oo. Fix p > 1. Let LP(2) denote
the linear space of all real Lebesgue-measurable functions u and bounded in the
usual norm denoted by [|ul[zs). Let (-, -)o and || - [|o be the standard L*(£2)-
inner product and norm. Fix & € R. The Sobolev space W*?(Q) is equipped
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kps = | Hw*’-v(sw
| [k == || - [lwr2) with |- | the corresponding semi-

with the usual norm denoted by |[u||yyr.s(q). Identify || - |
H*(Q) = Wk2(Q),
norm. Let the context determine whether W*?(Q) denotes a scalar, vector, or
tensor function space. For example let v : @ — RY. Then, v € H'(Q) implies that
ve HY (D and Vv € H'(Q) implies that Vv € H'(Q)?*?. Define

H () := {ve H'(Q) : vlsga=0}., V(Q):={veH; Q) : V-v=0}.

The dual space of H}(Q2) is denoted W=12(€2) := (H}(Q2))" and equipped with the
norm

<K v >z wml@)

[|f]|-1,0 = sup
0AVEH] () V10
Detfine
L§(Q) :={q e L*(Q) : (q.1)q = 0}.

For brevity, omit 2 in the d(‘fll]lt]()llﬂ above. For example, (-,+) = (-,+)q, H' =
HY(Q), and V = V(Q).

Fix time 7" > 0 and m > 1. Let W™9(0,T; W*?(Q)) denote the linear space
of all Lebesgue measurable functions from (0,7) onto W*? equipped with and
bounded in the norm

T

lallwomaqo,rweny = / D0 al )l dt) .

=0

Write Wma(Whe) = WWma(0, T; Whe(€)) and C™ (WHh») = cm ([0, T]; Wk»(9Q)).

2.1. Discrete function setting. Fix h > 0. Let 7;, be a family of subdivisions
(e.g. triangulation) of Q@ C R? satisfying Q0 = Uger, E so that diameter(E) < h
and any two closed elements Fy, FEs € Tp, are either disjoint or share exactly one
face, side, or vertex. Suppose further that 7, is quasi-uniformly regular as h — 0.
See [5] (Definition 4.4.13) for a precise definition and treatment of the inherited
properties of such a space (see Appendix ILLA in [11] for more on this subject in
context of Stokes problem). For example, 7, consists of triangles for d = 2 or
tetrahedra for d = 3 that are nondegenerate as h — 0.

Let X),. C (Hl)" and Q.. C L? be a FE space. For example, let X, . and Q). be
continuous, piecewise (on each E € Tp,) polynomial spaces. Define X, := X, .NH,_,
Qn := Q.. N L2, The discretely divergence-free space is given by

Vi=A{vin € Xj : (¢, V-vp) =0 Vg, €Qy.}.

Note that in general V;, ¢ V' (e.g. Taylor-Hood elements).
Set 0 =" < tl < ... <t" =T < oo with At = t" — "~ Write 2" = 2(t")
and 2" T2 = (2 (I”*') + z(#")). Define

(Af Zlng ||u”‘|;\l~41)l/q‘ q € [1.0()

i, = n=nmi,
HIIHI'I(IHI.‘INZZH hop) { MAX 0, <n<ms Hu‘”HI\'.]l' q = oc
forany O <n=my,mi+1,.... ma < N. Write |[ul|jaqwsry = |[al|jao,naen). We

say that u € [9(my, my; WHP) if the associated norm defined above stays finite as
At — 0. Define the discrete time-derivative

n+1 _ V”

At

A\

()u+l
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Explicit skew-symmetrization of the convective term in NS-type equations en-
sures stability of the corresponding numerical approximation:
1 1
ch(u, v, w) = i(u -Vv.w) — §(u Vw,v). (16)
Fixa; e Rfori=-1,0,1,...,n9 > —1 and n € {0} UN. Define £"(u) so that
cp(u, v, w) = cp(€™ (), v,w), £"(u) :=a_ju" ! Fagu + ...+ ap,ut "™,

To summarize,

No linearization = a_; =1, a;=0foralli>0

Linearization = a1 =0, a;#0 for somei >0
For example,
’Sn(u) = u® = 5"(u) == ll(', tn-{-l/'l) 4 O(Af)
En(u) — %(3un . u-,;.—l) = f"(u — ll(', f"+1/2) ke O(Afz)

g-n(u) — %(1511" o 1Uun,-1 + 311"‘2) = f"(U) — u(_’tn—H/Z) + O(At"")

CNLE is a particularly attractive method because it is At?-accurate, implicit in the
nonlinearity (a source of stiffness), and linearized which avoids issues of nonlinear
solvers converging and greatly reduces the computational cost. Fix the kinematical
viscosity v > 0. Note that v o« Re ™.

Problem 2.1 (CNLE). Suppose that wj, € Vj, fori =0,1,...,n9 and p;" € Q.
For each n =ng,no+1,...,N — 1, find (uZ“,pﬂ“) e X, x Qy, satisfying
n+1 n

u _ u n
(L‘At—h Vi) + en(§" (up), uh.+l/2~. Vi)
+u(Vup 2 Vvy) — T2V ) = (872 v), Ve Xy (17)
(gn, V-u"*') =0, Vgu € Q. (18)

Remark 2.2. Note that £"(uy) = u;:H/z defines the CNFE method analyzed in
e.g. [20], €"(up) = %(3u;7' - u'Z“l) defines the CNLE method of e.g. [3,13,24], and
£"(up) = u" /2 the O(At) ONLE method of e.g. [6].
2.2. Assumptions and approximations. Let C > ( be a generic data-independent
constant throughout: specifically, C' is independent of h, At, v — (0. Error esti-
mates for the elliptic projection (78) and Stokes projection (80) in L? and W~12
require regularity of solutions to the following auxiliary problem.
Assumption 2.3. Given 6 € W12, find (wy,ry) € H} x L} satisfying
(Vwo, Vv) = (rg, V- v) — (¢, V- w) = (0,v), V(v,q) € Hj x L*.

This problem is well-known to be well-posed. Suppose further that (wg,rg) €
(Hm+2N V) x (H™H N LE) satisfy

|[Wo|m+2 + |l7'9”m+l < C|10]|m (19)
when m =0, 1 and 0 € H" (with H = L?).
Indeed, (19) is true if € is smooth enough.

Preserving an abstract framework for the FE spaces, we assume that Xy, . x Qp..
inherit several fundamental approximation properties.

Assumption 2.4. The FFE spaces Xy, x Qp satisfy:
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Uniform inf-sup (LBB) condition:

((]ha v ' Vh)
inf  sup —F-—=
a€Qnvyex, [Valr [l

FE-approximation:

>C>0 (20)

inf [lu—wplli < CR*||ullrss

veex, (21)
inf |p—anll < Ch¥Y|pllssa

qhEQn

for k>0, and s > —1 whenu € H*' N H}, pe HT' N L2
Inverse-estimate:

[vili < Ch™Y|val], Vv, € Xp, (22)

The well-known Taylor-Hood mixed FE is one such example satisfying Assumption
2.4. Estimates in (23), (24), (25), (28) stated below are used in proving error
estimates for time-dependent problems. First define

o(t) == min {1,}.

Then for any n = ng,no+1,...,N —1, k> —1,
ln+J

0t 2 < At / D £)|3dt (23)
Jin
gl
™12 — (e, ) < CA (e 1/2)7 / o(t) 10,7 uC. OlfRde  (24)
t"
i
|03 u — (@) +1/2)|2 < CAt“o(t”'+‘/2)'2/ a(®)2]|0 a(, t)|3dt  (25)
t‘fl

when dyu € L2(H*), 12 0P u(-,t) € L2(H*), 2 8 u(-,t) € L2(H*). Derivation of
these estimates follows from application of an appropriate Taylor expansion with
integral remainder, see Appendix B. Moreover, (24) and (25) are replaced by

1_1!+1

Hun+l/'2 o u(,,tn-f—l/'l)H‘f_ < CAt3/t ||0(2) t)“%dt (26)
t”+l

08+ — (D)™ 2|2 < AR / 10 (-, )| 2dt (27)

if 9w e L2(H*), 8u € L2(H*) respectively. The operator £"(u) should be
chosen to preserve the At%-convergence rate of the fully-nonlinear CN scheme. This
is made precise by assuming (28) holds.

Assumption 2.5. Suppose that t* é)t(z)u € L%(H%) for some k > 0. Then for cach
n=ng, ng+1, ..., N—1,
tu-{-l
6w~ (e " < CARa(e )2 [ st uolftd (28)
Jn—ng
Note that if é),@u € L*(H*), then (28) becomes
‘f,"+1

1€ () = u(-, "2} < CAE / [[u(, #)][7dt 28]

Jn—ng
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We summarize the continuous-in-space and discrete-in-time counterparts to the
regularity results of Theorems 2.2, 2.3., 2.4 reported in [19] when the nonlocal
compatibility condition (4), (5) is not satisfied. The same results (with extensions)
are also reported and applied in [12,14-16]). We summarize the results here as
an assumption. The results follow if u € L>(H") and dQ and problem data are
smooth enough.

Assumption 2.6. Suppose that for any i >0, k> —1, and 2i + k > 0 that

T _
/ o ()2 31100 (-, 1)||2dt < oo

o
and
N 3
Af ZO_(f‘u)21+k72”0'(1)uu.”’i+1
n=1
N o
+ max o (8")2 R [ ALY o ()20 pt [ < oc.
=S k=1

3. Convergence estimate for CNLE

We state the main results in this section. A list of the constants found in these
theorems (referenced throughout this section) are compiled in Section 3.1. The error
equation required for the convergence proofs is derived in Section 4. Throughout.
require that the continuous problem data minimally satisfies u’ € H? NV and
f € WHo(L?). In this setting, we state the NSE: find u € L>(L?) N L?(H}) and
p € W1>¢(L2) satisfying

%(u.v) + (u-Vu,v) +v(Vu, Vv) — (p.V-v) = (f,v), VveH] (30)
Veou(x,t) =0 ae. (x,t)€Qx(0,7] (31)
u(x,0) = u’(x), ae x€Q. (32)

See e.g. [9] and references therein for NSE existence and regularity results. De-
fine e := u — uy. Proposition 3.1 provides sufficient conditions to conclude that
e €[> (L?)NI*(H"). Indeed, Proposition 3.1 holds for uw € CY([t", T]: H') without
a Gronwall exponential factor (use a priori estimate derivable for u}l“). Alterna-
tively, the proof of Proposition 3.1 herein is obtained as an intermediate step in the
proof of Theorem 3.5. We gain insight to the basic regularity requirements in our
method of proof for the error estimate (34).

Proposition 3.1. Suppose that the FE space satisfies Assumption 2.4. Suppose
further that Assumption 2.5 is satisfied along with

uel2(HHNI*WV) dme P(ng. N:W=12),  peil*(ng.N:LY).
and Oa € L*(t"0 . T: H"). Then

N—-1
||e,|[‘(rlu+l.;\":L'~’i + Ill/z(At Z Ie"+ I/ZI'T’)I/ZZ S ('( |uN|l + ’/1/2|IVll|l[-"(Il‘|.1\°-:L"’))
n=ny
+exp(Cv ™l i) (Kollellix 0,n0:12) + K1+ K2) (33)

The constants Ko, Ky, Ko >0 are given in (41). (42). (43) respectively so that the
right hand side of (33) remains bounded as h. At — 0.
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Proof. See Section 4.1. O

Remark 3.2. The regularity Opu € L*(t",T; H') assumption in Proposition 3.1
is more than necessary. Indeed, we can replace the elliptic projection with the
L2-prajection to eliminate the time-derivative term (Oar'n, U"“/ 2 ) (the source
of the resulting reqularity restriction) in the proof of Pmpos1tmn 3.1. However,
incorporation of the L*-projection from V into Vi, requires additional (technical)
development and does not benefit the main error estimate in Theorem 3.5 for k > 2.
Remark 3.3. The exponential Gronwall factor exp(Cv~'||ul[? (o :H?)) K
above typically takes the form exp( (‘lf"HVuH” (no.N:p2y)-  However, a factor of
S, 1IVut| 2 must be absorbed into Y, ||Va" 2|2 to proceed with the latter es-
timate. As discussed in Section 1.1.1, this is not possible in general for the usual
CNLE (without a great restriction on time interval length T ). In particular, since
the dissipative term for CN schemes has the form v ||Vu"/2|? and the usual
extrapolation for CNLE is £"(u) = 3u™ — éu"_l (which is not a sum of aver-
age velocities), errors manifested from the extrapolated velocity cannot be absorbed
(as usual) into the dissipative term. Consequently all errors propagated from the
extrapolated convecting velocity must be absorbed via the discrete Gronwall Lemma.

The optiuml convergence rate proved in Theorem 3.5 requires that initial iterates
{u,,} , are accurate enough. We make this precise in the following assumption.

Assumption 3.4. Fix k>0, s > —1 and o > 0. Suppose {u;, }7:0 satisfy
Kolle||ix(o,n:12) < (K h* + Kbt + K AF)

where Ko, K., K,, K; > 0 are given in (41). (44). (45), (46) respectively and
remain bounded as h. At — 0.

Note that Assumption 3.4 reduces to, when s =k — 1,
HeHlx (0.10;L2) < (Y(h + At )
The following theorem provides sufficient conditions to ensure CNLE converges

optimally in the energy norm: e.g. under usual regularity conditions and s =k — 1

N -1
l[el]i= (no-+1,n:2) + VM2 (At Z [ePFA2EE < R 4 Kb

n=mnq

without any At-restriction!

Theorem 3.5. Fir k > 0, s > —1. Under the assumptions of Proposition 3.1.
suppose further that Assumptions 2.5, 3.4 are satisfied along with u € [>°(H* N
H2) N 2R, O € L2, T HY -V 0 HY) 0% (ng, Ny HY), 0 a € L3(L?),
0,@u € L2(t™, T;W~12), and p € *(no, N; H¥T). Then
N-1
ellioo gy 1, 10522y F 012 (A8 3 | R < GN B ot
n=nuy

+ (Cl[aM [k + Cv 3 {|ulli2 (ng vy + GN KB + GN K A (34)

where GN = exp(Cv=H|ullj,,, nigzy) The constants K., K, K¢ > 0 are given
in (44), (45). (46) respectively and remain bounded as h, At — 0.
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Proof. See Section 4.1. O

In the general case that the compatibility condition (4), (5) is not satisfied, the
result of Theorem 3.5 holds under a reduced convergent rate: e.g. under usual
regularity conditions and s = k — 1

N—1
”elll"(nn-f—l,N:L?) + VI/Z(At Z Ien+1/2l'f)1/2 < Co'(fl)_](ﬂ(tl )—(L-_:j)/zhk + At‘))

="y

Theorem 3.6. Fiz k > 0, s > —1. Under the assumptions of Proposition 3.1,
suppose further that Assumptions 2.5, 3.4, and 2.6 are satisfied. Then (34) holds
with Ky, K,, K; replaced by o(t')"*" V12K, o(t')""2/2K, and o(t') 'K,
respectively where the constants K., K,, K, > 0 are given in (47), (48), (49)
respectively and remain bounded as h, At — 0.

Remark 3.7. If we use the L?-projection rather than elliptic projection in proving
Theorem 3.6, the result is improvable so that K, is replaced by o(t')~*—2/2F,,.

Proof. See Section 4.1. O

An estimate for AtY" ||(e"*! — e")/At[|? is needed in the error analysis for
pressure and the drag/lift forces by the fluid on embedded obstacles. Theorem
3.8 provides sufficient regularity of (u,p) solving (81), (82), (83) to ensure uy, €
[*(H') and dauy, € [2(L?). Note that the regularity du € L2(t",T;H"),
Op € L2(t™,T;L?) in Theorem 3.8 is a result of using the Stokes projection in
corresponding proof herein and can be relaxed. The proof of Theorem 3.8 is ob-
tained as an intermediate step in the proof of Theorem 3.10. Relaxing the regularity
assumption (by using the L?-projection or elliptic instead) leads to a suboptimal es-
timate. The additional regularity required here gives insight to the extra regularity
required for the optimal error estimate (38).

Theorem 3.8. Under the assumptions of Proposition 3.1, suppose further that u €
I(H?), p e I>®(HY), Opu € 12(ng, N: L) L2(t", T; HY), and Oyp € L*(t",T; L?)

so that
N—1

h'AL > e tV2} < oo, ash, At —0. (35)

n=mng,
Then
[10acelli g +1.8502) + 72 (1Vellix (no+1.8:1.2)
< GN(FOHVEHI‘ (0,n0;L2) T+ Fy + F:Z) i CU?I/Z“T’NH
+ Cv 2 a |y + Chw™ |0l | L2 (im0 12) + Ch|Opu]| L2 (im0 iy (36)

where GN = exp(Cv—' At Z,,]Y;”l“(Hu"H/?H% + h~=Ye"t1/2|2)). The constants Fy,

F\, Fy are given in (50), (51), (52) respectively so that the right hand side of (36)
remains bounded as h, At — 0.

Proof. See Section 4.2. O

The optimal convergence result proved in Theorem 3.10 requires that the initial
. i . . v . .
iterates {u}'l }’.fo must be accurate enough. We make this precise in the following
assumption.
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Assumption 3.9. Fiz k>0, s> —1 and o > 0. Suppose {uﬁl}:” satisfy
Fo||Velli= (0m;02) < a(Fuh* + Fh T + FAL?)
where Fy, F,, F,, Fy > 0 are given in (50), (53), (54). (56) respectively.
Note that Assumption 3.9 reduces to, when s = k — 1,
IVellix 0moi2) < a(h® + At?).
Therefore, under usual regularity conditions we show in Theorem 3.10 that
||10acelliz(ne+1,8:L2) + ||Vl (ng-41,n:12) < C(h* + At?)
as long as At < Mh'/* for any arbitrary M > 0 (i.e. no v-dependence).

Theorem 3.10. Fiz k >0, s > —1. Under the reqularity of Theorem 3.8, suppose
further that Assumptions 2.5, 3.9 are satisfied along with u € [>®°(H**'), O €
L2(tm, T; H* N H3)NI™®(ng, N; L2), 0P u € L2(t™, T; HY), 0% u € L2(t™, T; L?),
p € I°(H*T), oyp € L2(t™,T; H®), and

At < MRY*, for any constant M > 0 (no v-dependence). (37)
Then
10ac€lli2no+1,5:22) + v2(Velli (mg-41,8:L2)
N-1
< GN(Fuhk +ths+l + FtAt2 +F’3(At Z |en+1/2ﬁ)1/2) (38)
n=mny
where GN := exp(Cv 1At Z,I:J;;“(Hu”“/zﬂg + h~'e™t1/2|2)). The constants F,,

F,, F3, Fy, > 0 are given in (53), (54), (55), (56) respectively and remain finite as
h, At — 0.

Proof. See Section 4.2. O

In the general case that the compatibility condition (4), (5) is not satisfied, the
result of Theorem 3.10 holds under a reduced convergent rate: e.g. under usual
regularity conditions and s =k — 1

|[Oarelli2(ng+1,n522) + 12| Vel | (g +1,3522) < Ca(t) ™2 (a(t')~F=N/20F + At?)

Theorem 3.11. Fiz k > 0, s > —1. Under the assumptions of Theorem 3.8,
suppose further that Assumptions 2.5, 3.4, and 2.6 are satisfied. Then (38) holds
with Fy, F,, F; replaced by o(t')~F=V/2F, o@t')~*=Y/2F, and o(t')3/?F,
respectively where the constants F,, F,, Fy > 0 are given in (57), (58), (59)
respectively and remain bounded as h, At — 0.

Proof. See Section 4.2. O

Remark 3.12. It is common to assume that u € L>(W1>°) in the convergence
analysis of NSE approzimations (see e.g. [3,24]). The conclusions of Proposition
3.1 3.1, Theorem 3.5, in addition to those of Theorems 3.8, 3.10 are preserved
with the regularity condition u(-,t) € H? replaced by u(-,t) € W™, Regard-
less, the analysis of [24] suggests an h, At-restriction for optimal convergence in
(L) N I*(H") (Theorem 3.1 in [24]) and a sub-optimal convergence estimate
[[a = ap||i 1y < OF + b+ + h=32At* + At¥/2) (Theorem 4.1 in [24]). The
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1°(H")-estimate in [24] requires, for instance, At < hBT2K)/8 for optimal conver-
gence rate as h — 0, but still predicts suboptimal convergence rate with respect to

At — 0.

The error estimates of Proposition 3.1, Theorem 3.5, 3.8, 3.10 give conditions
in which pj,(avg) € lz(nu.N: Lg), u, € l”(vm.N:H‘). and dauy, € [3(L%). In
particular, as a direct consequence of (36) and the conditions of Theorem 3.8, we
have

[10aean|lizng, ;L2 + YIIVaR |l g, N;L2) < C < o0
Estimates for pressure follow as well and are summarized in the next Corollary.

Corollary 3.13. Under the conditions and conclusions of Theorem 3.8.

N-1
At ST A < O <00, ash. At 0. (39)

=1

Under the conditions and conclusions of Theorem 3.10. for s =k — 1,

N-—-1
ALY ([t = pp TR < o (hF + Ar). (40)

n=ny

Proof. See Section 4.3. |

3.1. Constant factors in convergence estimates. For Proposition 3.1, define
the spatial-modeling error in X, x Q, by K. time modeling-error by Ky, and initial
condition modeling error by Ky so that

Ko:=C+ 0yt [l Bl ()
Ky 2= Cv 2| |Vul|ix 12|Vl 2y + Kollullix 0.ng:L2)+

oo O 2 Ipl g, sy + Cro ™ PRE O | L2 i) (42)
Ky : = Cv (|| Vi~ 22 [Vl g 3:02) + - -

‘12‘3(111.(N:H‘ '~2))' (43)

st H(‘)/lllli-_,“,,,,‘-,V:H- vy + [|0]

For Theorem 3.5 fix & > 0, s > —1, k* = k (with A+ = 2 if k£ = 1) and define the
weight of spatial modeling error in X, by A, spatial modeling error in Qy, by K,,.
and time modeling error by K so that

Ky:=Cv~ I/2||VU||I‘(L2)|[‘1||i3(l—{*'+“) e ”_1/21|(')tu|\L'Z(f"url'-.lw 1+
oo+ Kollaflyx 0,n0; 1)) (44)
Ky : = Cv = 2||plliz(no.wsmot) (45)

- =14 (3 (2
Ky 0= Ov 2(108 | pageno w12y + ([l a2y 1000 22y + - -
oo |00l (ng N2 O] | L2 00 7. 12)) (46)
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K, = CAt 2o (th) D201 2|Vl 120 k1 + Koo () * D2 |k
N
+Cv P (t) 2]Vl 2y (ALY o ()2 Ju|[740)?
n=1
T
+Cv 2 o) Y|l )| d)' 2

Jtro

+ Co(t') /(Ko max o(t") "2/ ju"(|)) (47)

N
Kp:=Cv ' (ALY o(t™) 2" 7)) (48)

n=nq

T
Ke:=Cv ' 2| a(t)? |0/ a(-,t)]|-1dt) '/

Jno

T
+ Cv 2o (1) [l 12 / a(t) 110" u(-,1)||de)' /2
J o
& 7 ‘T
+ Cu"/*’a(t""’)'/‘ZAfll(')rUHzxum.N:LZ)(/ o(t) |0 t)l]2dt)'/?. (49)
0
Analogous to K. K», Ky, for Theorem 3.8 define the spatial-modeling error in
Xp x Qp by Fy, time modeling-error by Fj, and initial condition modeling error by
Fy so that

2ng—1
) n+1/212 —ligndl/212\\1/2 e~
Foimou? 4ol (B Z (™25 4+ R e RN i me 2 1 gy
n=
0 otherwise
Fy = Cv [l g, w2 1Pl 2) + v Folpllix 0,n0:12)
+ Clalli (no, n;a2) IV ]2 (1,2) + Fol| V|| (0,n4:22)
+ CI/7lh.”(‘)fllllLZ(,n.,‘r,-:L'.’) + C’hIIH"UIIL:'(:‘”“,T:H‘ )
N—1
+ Cw™ R 2 pllis gy + [l a2y (AE Y e T2(7)2 (51)
=T
. - a2
1‘3 L= C(|lll”l~<(;[2) ’()IUHL"’(I“H THY) -+ H()} )u||l‘2(l“l'.'lk;lﬂ) + ...
vl L2gme g2y + Ol L2 @m0, 1imy + O] L20m0 1 12))- (52)

For Theorem 3.10, fix & > 0, s > —1 and define the weigit of spatial modeling error
in X, by F,, spatial modeling error in 0y, by F),, the bootstrapped modeling error
of velocity in the energy norm by F3, and time modeling error by F} so that

F,:= p(”“”l’*(112)I|qu‘-’(l{* ry |WIUHL‘-’(/HU.'I';Iﬁ) +...

oo Follallis 0,ngme41) (53)
Fy o = Cv ' (|[allix (a2 lIplliz =1y + 10l L2gemo 1msy + - -

e+ Eol[pli (0,n0: 1)) (54)
Fy : = Cllulli= ) ([[alli= a2y + v~ B2 [plli= (a)) (55)
Fy:= C(Halwul|L2(f."u,T:L2) + ||“||1--(m,,N;H'-’)||3§2)U||L‘-’(r"n.rzul) 4o e

o 00a |1 (ng, 822y 1000 L2 ¢emo i 13y) (56)



