.EATCS R i g
‘Monographs on ’Iheoretlcal Computer Saen T

Volume 20=

tlEi Edltors W, Brauer G Rozenberg A Salomaa S

Seppo Sippu
Eljas Soisalon-Soininen

Parsing Theory

Volume IT
LR(k) and LL(k) Parsing

Springer-Verlag
20K p e d)

Seppo Sippu
Eljas Soisalon-Soininen

Parsing Theory

Volume 11
LR(k) and LL(k) Parsing

Springer-Verlag Berlin Heidelberg NewYork
London Paris Tokyo Hong Kong Barcelona
ZERE L s E-THM-LEER

Authors

Professor S. Sippu

Department of Computer Science, University of Jyviskyld
Seminaarinkatu 15, SF-40100 Jyviskyld, Finland

Professor E. Soisalon-Soininen
Departntent of Computer Science, University of Helsinki
Teollisudskatu 23, SF-00 510 Helsinki, Finland

Editors

Prof. Dr. Wilfried Brauer

Institut fir Informatik, Technische Universitdt Miinchen
Arcisstr. 21, D-8000 Miinchen 2, Germany

Prof. Dr. Grzegorz Rozenberg

Institute of Applied Mathematics and Computer Science
University of Leiden, Niels-Bohr-Weg 1, P.O. Box 9512
NL-2300 RA Leiden, The Netherlands

Prof. Dr. Arto Salomaa
Department of Mathematics, University of Turku
SF-20500 Turku 50, Finland

ISBN 3-540-51732-4 Springer-Verlag Berlin Heidelberg NewYork
ISBN 0-387-51732-4 Springer-Verlag NewYork Berlin Heidelberg

Library of Congress Cataloging-in-Publication Data

(Revised forvol. 2)

Sippu, Seppo, 1950-

Parsing theory.

(EATCS monographs on theoretical computer science ; v. 15, 20)
Includes bibliographical indexes.

Contents: v. 1. Languages and parsing - v. 2. LR(k) and LL(k) parsing.

1. Parsing (Computer grammar) 2. Formal languages.

1. Soisalon-Soininen, Eljas, 1949-. 11. Title.

111. Series: EATCS monographs on theoretical computer science ; v. 15, etc.
QA267.3.559 1988 511.3 88-20091

ISBN 0-387-13720-3 (U.S.:v.1) -
ISBN 0-387-51732-4 (U.S.: v.2)

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, re-use ofillustrations,
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data
banks. Duplication of this publication or parts th;reof is only permitted under the pro-
visions of the German Copyright Law of September 9, 1965, in its current version,
and a copyright fee must always be paid. Violations fall under the prosecution act of
the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990

Reprinted by World Publishing Corporation, Beijing, 1993
for distribution and sale in The People’s Republic of .China only
ISBN 7 -5062- 1530~ 6 '

Preface

This work is Volume II of a two-volume monograph on the theory
of deterministic parsing of context-free grammars. Volume I,
“Languages and Parsing” (Chapters 1to 5), was an introduction to
the basic concepts of formal language theory and context-free
parsing. Volume 1I (Chapters 6 to 10) contains a thorough treat-
ment of the theory of the two most important deterministic parsing
methods: LR(k) and LL(k) parsing. Volume II is a continuation of
Volume I; together these two volumes form an integrated work, with
chapters, theorems, lemmas, etc. numbered consecutively.

Volume Il begins with Chapter 6 in which the classical con-
structions pertaining to LR(k) parsing are presented. These include
the canonical LR(k) parser, and its reduced variants such as the
LALR(k) parser and the SLR(k) parser. The grammar classes for
which these parsers are deterministic are called LR(k) grammars,
LALR(k) grammars and §LR(k) grammars; properties of these
grammars are also investigated in Chapter 6. A great deal of
attention is paid to the rigorous development of the theory: detailed
mathematical proofs are provided for most of the results presented.

Chapter 7 is devoted to the construction and implementation of
LR(k) parsers using lookahead length k£ = 1. Efficient algorithms
are presented for computing parsing tables for SLR(1), canonical
LR(1) and LALR(1) parsers. Special attention is paid to the opti-
mization of LR(1) parsers. An efficient general algorithm is pre-
sented for eliminating reductions by unit rules from an LR(1) pars-
ing table. In developing these algorithms, substantial use is made
of the results of Volume I, Chapter 2, where a general algorithm
for evaluating a binary relational expression was presented.

Chapter 8 deals with the theory of LLL(k) parsing. The con-
structions pertaining to LL(k) parsing are developed in a way
analogous to that used in LR(k) parsing,so as to expose the dualism
between these theories. For example, canonical LL(k) parsers and
LALL(k) parsers are defined as counterparts of the canonical
LR(k) and LALR(k) parsers. The relationship between the LL(k)
and LR(k) grammars is studied in detail, and methods for trans-
forming subclasses of LR(k) grammars into LL(k) grammars are
presented.

-

Vi Preface

Chapter 9 deals with the problem of syntax error handling in
parsers. The nature of syntax errors is discussed, and algorithms for
constructing error recovery routines for LL(1) and LR(1) parsers are \
presented. The treatment in this chapter is somewhat tess formal
than in the other chapters.

Volume II concludes with Chapter 10 that deals with the com-
plexity of testing whether or not a givefi context-free grammar
belongs to one of the grammar classes discussed in the previous
chapters. Efficient polynomial-time algorithms are developed for
LR(k), SLR(k), LL(k) and SLL(k) testing when the lookahead
length k is fixed. Hardness results are derived for the case in which
k is a parameter of the testing problems. Upper and lower bounds
on the complexity of LALR(k) and LALIL(k) testing are also
established.

Jyviskyli and Helsinki, June 1990 Seppo Sippu
Eljas Soisalon-Soininen

Acknowledgements :
The work was supported by the Academy of Finland, the Finnish
Cultural Foundation, and the Ministry of Education of Finland.

Contents

6. LR(k)Parsingo 1
6.1 Viable Prefixes 2
6.2 LR(k)-ValidItems 14
6.3 Canonical LR(k) Parsers 28
6.4 LR(k) Grammars o o 00 e . 45
6.5 LALR(k) Parsing PP ¢
6.6 SLR(k) Parsing 70
6.7 Covering LR(k) Grammars by LR(1) Grammars . . . 84
EXErcises o o o v e e e e e e e i06

BibliographicNotes 117

7. Construction and Implementation of LR(1) Parsers . .. 119

7.1 Construction of SLR(1) Parsers 119
7.2 Construction of Canonical LR(1) Parsers 123
7.3 Construction of LALR(1) Parsers 125
7.4 Implementation of LR(1) Parsers 135
7.5 Optimization of LR(1) Parsers 149
7.6 Parsing Ambiguous Grammars 182
Exercises« oo oo B 187
Bibliographic Notes 195
8 LL(k)Parsing 197
8.1 Viable Suffixes oo 198
82 LL(k)-Validltems 207
8.3 Canonical LL(k) Parsers 218
8.4 LL(k) Grammars 229
8.5 Construction of LL(1) Parsers 249
8.6 Non-Left-Recursive Grammatical Covers 256
8.7 Predictive LR(k) Grammars 265
BXEICISES . =« v v o v o e e e e e e e e e e e 275

Bibliographic Notes 286

Vil Contents

9. Syntax ErrorHandling 289
91S8yntax Errors oL L. 289
9.2 Error Recoveryin SLL(1) Parsers 294
9.3 Error Recovery in LR(1) Parsers 303
9.4 ErrorReporting 316
Exercises L 322
BibliographicNotes 326
10. Testing Grammars for Parsability 329

10.1 Efficient Algorithms for LR(k) and SLR(k) Testing . 331
10.2 Efficient Algorithms for LL(k) and SLL(k) Testing . . 352

10.3 Hardness of Uniform LR(k) and LL(k) Testing . . . 369
10.4 Complexity of LALR(k) and LALL(k) Testing 387
Exercises 400
BibliographicNotes 408
Bibliography to Volume 1 411
IndextoVolumeII 419

Contents of Volume I

1. Elements of Language Theory
2. Algorithms on Graphs

3. Regular Languages

4. Context-free Languages

5. Parsing

Bibliography to Volume 1

Index to Volume 1

6. LR(k) Parsing

In this chapter we shall consider a general method for deriving deterministic right
parsers for context-free grammars. The method will be called “LR (k) parsing”. The
acronym “LR(k)” refers to the most general deterministic parsing method in which
the input string is parsed (1) in a single Left-to-right scan, (2) producing a Right
parse, and (3) using lookahead of length k.

LR(k) parsers are a generalization of the nondeterministic shift-reduce parser
presented in Section 5.2 and of the simple precedence parser presented in Section
5.7. The key idea in the generalization is that the stack symbols, which in the shift-
reduce and simple precedence parsers are plain grammar symbols, are divided up
into one or more “context-dependent” symbols. For each grammar symbol X there
will be as many stack symbols as there are distinct equivalence classes of the form
[yX], where yX is a stack string of the shift-reduce parser. Here two stack strings
7, X and y,X are called equivalent if (to put it informally) exactly the same set of
parsing actions are valid in the contexts y,X and y,X. In this way, replacing
symbols X by equivalence classes [yX], we can restrict the applicability of the
actions of the shift-reduce parser so that a deterministic right parser is obtained for
a large subclass of the context-free grammars. These grammars, called the “LR(k)
grammars”, form a powerful means of language description: any deterministic
language (i.e., a language accepted by a deterministic pushdown automaton) can be
generated by an LR(k) grammar.

In Section 6.1 we shall study the properties of the stack strings of the shift-
reduce parser. The stack strings that appear in the stack in accepting computations
will be called “viable prefixes”. In any grammar, the viable prefixes form a regular
language over the alphabet of the grammar. In Section 6.2 we shall present, for
natural number k, an equivalence relation on the set of viable prefixes. This
relation, called “LR(k)-equivalence”, is obtained via sets of “valid k-items”. The
k-items are a generalization of the grammar positions used in Section 5.5 in
constructing strong LL{1) parsers. The LR (k)-equivalence is of finite index, that is,
it has only a finite number of distinct equivalence classes. Any equivalence class can
be represented by a certain set of valid k-items. Moreover, it is possible to compute
these sets from the grammar.

In Section 6.3 we shall use the concept of LR(k)-cquivalence to define the
general notion of an LR (k) parser, called the “canonical LR(k) parser”. This is a
right parser which uses k-length lookahead strings and whose stack strings consist
of equivalence classes of viable prefixes. In Section 6.4 we shall study the properties
of LR(k) grammars. In Sections 6.5 and 6.6 we shall consider some practical

2 6. LR(k) Parsing

variations of the canonical LR(k) parser. These variations are called “LALR (k)
parsers”, “LA (k)LR (/) parsers”, and “SLR (k) parsers”. The classes of grammars for
which these parsers are deterministic are called, respectively, “LALR(k)
grammars”, “LA (k)LR (/) grammars”, and “SLR (k) grammars”. For all k > 0, these
classes are contained in the class of LR (k) grammars. The smallest of these classes,
the class of SLR(k) grammars, is powerful enough to generate all deterministic
languages. The chapter concludes with Section 6.7, in which we shall show that any
LR (k) grammar can be transformed into an equivalent LR (1) grammar. This means
that any deterministic language can in fact be generated by an SLR(1) grammar.

6.1 Viable Prefixes

We begin by considering the problem of constructing a deterministic right parser
for the grammar G,,:

S —adlbB ,
A—cldAd ,
B—c|dBd .

G,, is an s-grammar and generates the language

L(G) = {a, b} {d"cd"|n > 0} .

As G, has two rules with the same right-hand side, it is not a simple precedence
grammar, and so its simple precedence parser is nondeterministic. In fact, to any
configuration of the form

$acly$, where Sx:tef{a, b,d} and 1:y$€{$,d} ,

applies a reduce action by both 4 —c and B —c.

We might try to make the parser deterministic by extending the lookahead and
lookback symbols of the reduce actions into strings of length k, for some sufficiently
great k. This would result in a parser in which the reduce actions by A — ¢ and
B — ¢ are of the forms

aclx - adlx, pcly— BBly ,

where « and B are certain strings in $¥*:k and x and y are certain strings in k: T*3.
But then, in particular, there would be the pair of actions

dcld* > d*A 1 d*, d*c1d*—»d“Bld* .

This is because some reduce action by A —c¢ must be applicable to the
configuration $ad*c | d*$ if the sentence ad*cd* is to be accepted, and some reduce

6.1 Viable Prefixes 3

action by B — ¢ must be applicable to the configuration $bd*c | d*$ if the sentence
bd*cd* is to be accepted. As the pair of actions exhibits a reduce-reduce conflict, we
must conciude that it is impossible to obtain a deterministic right parser for G, just
by adding lookahead and lookback strings to the actions of the shift-reduce parser.

To solve the problem we take a closer look at those strings that can appear in
the stack in some accepting computation of the shift-reduce parser. We call these
strings viable stack strings. In general, a string y is a viable stack string of a
pushdown automaton M if

$yiwh=* Fplps =% 5§y, i 5 in M

for some input strings w and y and final stack contents y,. (3, is the initial stack
contents of M.)
Obviously, the set of viable stack strings of the shift-reduce parser for G, is

{e} v {ad™\n = 0} U {ad"c|n = 0}
“ufad"Aln = 0} U jad"Adin = 1}
U {bd"|n =0} U {bd"cin = 0}
U {bd"Bjn = 0} U {bd"Bd|n > 1}
u{S} .

To each stack string a number of parsing actions are appiicable. However, only
few of these yield a viable stack siring as a result. For exampie, to the stack strings
ad"c and bd"c a reduce action by both 4 — ¢ and B — ¢ 15 applicable, but among the
resulting sirings ad"4, bd"B, ad"B. bd"A only the first two are viable stack strings.
This means that we can resolve the reduce-reduce conflict between 4 — cand B — ¢
by imposing the additional restriction that a parsing action can be applied only if it
is “valid” in that it yieids a viable stack string as a result.

it general, we say that an acticn r of a pushdown automaton M is valid for
viabie stack string y of M if

$yivS - Sy iv'S in M

for spme input strings y and)’ and viabie stack string ;.

As the set of viable stack strings is usually infinite. as 1s the case in G,,. the
reader might feel that 1t is impossibie. in gencral, to find out which actions are valid
for whicn stack strings. However, we can always divide the sct of viable stack
strings into a finite number of equivalence classes. Two stack strings belong to the
same equivaience class if they have the same set of valid actions. Since for any
grammar G = (¥, T, P, §) the shift-reduce parser has |T| + |P| < |G| distinct
actions, the number of distinct equivalence classes is bounded by 2'%!, the number
of distinct subsets of a |Gl-element set.

4 6. LR(k) Parsing

In the case of G,, the equivalence classes and the associated valid actions are:

equivalence class: valid actions:

{e} shift a, shift b
{ad"|n = 0} U {bd"|n = 0} shift c, shift
{ad"c|n = 0} reduce by A -» ¢
{aA} reduce by § - a4
{ad"4{n 2 1} U {bd"B|n > 1} shift d

{ad"Ad|n > 1} reduce by A -+¢ id
{bd"cin 2 0} reduce by B- ¢
{bB} reduce by S - bB
{bd"Bd|n = 1} reduce by B — dBd
{8} ’ =

. Theidea is to use these equivalence classes as stack symbols of the parszr. In the

actions of the parser, any grammar symbol X originally located to the leit of the
delimiter 1 is replaced by an equivalence class of the form [4X], where 6X is a
viable stack string. Accordingly, for each viable stack string é and terminal a there
is the shift action

(sa) [_6] la-[6][0a}l,

provided that da is a viable stack string. Similarly, for each stack string § and rule
A—X,...X,, where each X; is a single symbol, 1 < i < n, there is the reduce
action
(ra) [o100X,]. ..[3X,... X, Jt>[3][o4 N ,
provided that 6X,, ..., éX,...X,, and é4 are all viable stack strings {In the
general case, the action may also contain a lookahead string; this will be conrsidered
later.) The initial stack contents of the parser are {£], and the final stack contents
are [¢][S].

For example, the parser obtained in this way for G,, has, among others, the shift
actions

[e]la— {e][ad* wbd*]i (shift a) ,
[e]1b — [¢][ad* wbd*]] (shift b) ,
and the reduce actions

[ad* U bd*) [ad*c]V — [ad* v bd*) [ad * A LU bd™ B]1
(reduce by A - ¢) ,

6.1 Viable Prefixes

[ad* U bd*] [bd*c] | -+ [ad* L bd*][ad* A L bd* B]I
(reduce by B—¢) .

Here we have used regular expressions, rather than single members, to denote the
equivalence classes. For regular expression E, [E] means the equivalence class of
any w in L(E), that is, [E] =[w] for all w in L(E). Thus we have always
L(E) < [E]. In fact we usually have L{E) = [E], as is the case above. Soon we shall
see that the equivalence classes are indeed regular languages, for any grammar, and
can therefore always be denoted by regular expressions.

Obviously, there is Ao conflict between the above two reduce actions.
Urfortunately, our construction has introduced some new conflicts not present in
the original parser. There is a reduce-reduce conflict between two reduce actions by
A - ¢ and a reduce-reduce conflict between two reduce actions by B — ¢. These
actions (which conflict with the above two reduce actions) are:

[ad* U bd*}{ad*c1? - [ad* U bd*][aA]

(reduce by A —»¢) ,
[ad* u bd*1[bd*c]! - {ad* U bd* 1 [bB]]

(reduce by B— ¢) .

Note that [aAd] 5 [ad* A bd™* B] # [bB]. Moreover, there is an entirely new type
of conflict, a “shift-shift conflict”, between the actions

[ad* U bd*}lc — [ad* U bd*] [ad*c]l. (shift c) ,
[ad* L bd* 1l — [ad* w hd* 1 [bd*c]l (shift ¢) ,

as well as between the actions

fad*Aubd*B]ld —[ad” AL bd* B][ad* Ad]\ (shift d) ,
fad*Awbd*BIVd > [ad* A ubd*B][bd*Bd]V (shift d) .

The reason for these new cenflicts is that the division into equivalence classes is
not refined enough. Coasider, for example, the viable stack strings ad" and ad"A,
n>=0. For all n>0, the strings ed® belong to the same equivalence class,
[ad* U bd*]. However, the strings ad®4, n > 0, are divided into two distinct
equivalence classes: [uA] and [ad™ 4 U bd* B]. Similarly, bB is not equivalent to
bd"B, n > 1, although all bd", n > 0, are equivalent. This is an anomaly, because if
two stack strings é, and &, are already equivalent it is natural to assume that they
remain equivalent if they are lengthened; by the same symbol X, to viable stack
strings 3, X and J,X. In other words, the equivalence should be right-invariant.

Another natural requirement, closely related to right-invariance, is that
two equivalent stack strings y, and y, should end with the same symbol, that is,
y1:1 = y,:1. Observe that otherwise it is not clear how we can define the value of
the output cifect 7 in the case of a reduce action

[8106X,]...[o0X,... X 11> [61[o4]t .

6 6. LR(k) Parsing

We can map this action to the rule A — X, ... X, only if the rule is uniquely
defined, that is, if there is no other rule A’ — X ... X, satisfying {64'] = [04],
[(OXxii1=00X.], ..., [6X ... X, 1=[6X,... X,]. Uniqueness is clearly
guaranteed - if equivalent stack strings y, and y, always satisfy the condition
11:1 =75:1

.- To fulfil the above two requirements in the case of the grammar G,,, we must
refine the original equivalence as follows:

(1) The class [ad* U bd*] is split into the classes [a]. [ad*], [b], [bd*].
(2) The class [ad* 4 w bd* B] is split into the classes [ad' A7 and [bd " B].

The classes under the refined equivaience are represented in Figurc 6.1 as nedes
of a transition graph. The graph has an edge labeled by symbol X” from node {§] to
node [0X] whenever § and 86X are viable stack strings. The graph can be
interpreted as a finite automaton, with [£] as the initial staie and a given class [y as
the only final state. The language accepted by that automaton equals [y].

d d
{_[;1@ [:[E;_Tﬁ:d)]

Figure 6.1 Trunsition graph for the viable stack strings cof the shift-reduce paiser for the grammar
Gy S = aAlbB, 4 - cid4d. B— c|dBd

We are now ready to write down the actions of the parser for G,,. The shiil
actions are:
ry=[e]ia-[el[a]t,)=t .
r, =[ejib—>[e][b]i. Tr))=c¢ .
ry=[a}ic— [a][ad*c]t. (ry)=c¢ .

6.1 Viable Prefixes 7

re = [a]ld = [a}[ad* 1V,) =¢ .
rs=[ad*]lc - [ad* J[ad*c]], t(rs)=¢ .
re =lad*11d - [ad*][ad* 11, t(rg) =¢ .
ry=fad*AJid - [ad* AJ[ad* Ad] 1, w(ry)=¢ .
rg = {b]lc— {b][bd*c]i, T(rg) =2 .
ro ={bhlkd - [bj[bd" 1}, rg) =¢ .
rro = [bd" J¥e— [bd" Jlbdcly, ro) =¢ .
roy = [bd* Jid - [bd* 1[bd* 11, ry) =7 .
rip = [hd* BI1d - [bd " B3 [bd* Bd]\, T(rys) =2 -

The reduce actions are:

riy = [allad*c}i - [a][aA]t, t(r;;)=A-c .
ris = (ad* J{ad*cji > [ad* Jad* A3, ri)=A—-c.
ris = Ldilad* Jlad* AJ[ad " Ad)i— [¢][a4]l,

1(r;s) = A - dAd .
ris = [ad*1[ad* 1[ed* A][ad* Ad]] — [ad*}[ad* A1),

t(rie) = A = dAd .

ri7 = [e]lal[aA]t - [e]} (8], (ry7) =8 —+ad .
rig = [b][bd*c}i— [b1[b8]}, (rig)=B—-c.
rio = Lbd* Y [bd*cji —[bd*]i{bd " B]i, (rig)=8~c .

ryo = (b1[bd* 1 {hd" BI[bd* Bd]i —» [b][bB]L tlrye) = B—dBd .
ry = (bd*J[bd* Jbd* B {bd " Bd}1 — {bd ™ J{bd* B1i,
©(ry,) = B —dBd .

r.n G R - o © £
rpa = [3I6]00B11 - [ej 151, t(ryz) = § = b .

Wiih these actions, the parser is deterministic. That we have indeed cbtained a
right parser for G, is seen from the {oliowing computations.

$Teliach == $[e][a)icS == $[e1lq] [ad*c]is
== $[a][a}[aAT1S == $[e] (815 .
${c]ibcs == S[e[p]icS == $[e]ib] [bd*c]¥s

L8 S[e][PIIPBTIS =2 S[e] (SIS .

8 6. LR(k) Parsing
$[e]adcd"s = $[c][a]ld"cd"$ => $[e][a][ad*]| d" 'cd"$
L STl [ad* 1"t cd"$ =% $[&][a] [ad*]"[ad*c]1d"S
=% $[e][a])[ad* "[ad* A]1d"$
Cnel . $rel[a]lad” J[ad* A]14dS
é’:s[e] (al[ad* }(ad* A)[ad* Ad]1$

r:

=5 $[c){a] [aA11S === $[][STi$, foralln>1 .

S[e]1bdmcd™S —== $e][h]1d"cd"S
2o ST IB](bd 1N d " ed"S s $[6][b][bd* T"Ecd"S
L2 S[EI[hIIbd" " Thd*c]1d"S

== S{e][b1[bd* 1" [bd* BV d"$

(riar2)” !

S[£][b][bd* 1[bd* B]1dS

L2, S[e)[b1[bd* 1 [bd* B][bd* Bd11S

rzo

=== $[e][b][PBIIS == $[c][S]1!S, foralln>1 .
The parses produced are:

T(ryraryaryg) = (A =) (S —»ad) .

t{rargrigra) =(B—c)(S—>bB) .

T(rirarg 'rsria(rarie) T irarsr) = (A) (4 — dAd)'(S — ad) .
T(rareriy 'riorislriaray)" riaraern) = (B—= o) (B - dBdY'(S — bB) .

The parser for G,, is an example of an “LR(0) parser”. Here “LR” means that
the input string is parsed from Left to right and that a Right parse is produced. “0”
means that lookahead strings of length zero are used in the reduce actions, that is,
there is no lookahead.

The procedure foliowed above for deriving an LR parser is more or less ad hoc,
because of the inadequate definition of the equivalence of viable stack strings. Later
in this chapter, in Section 6.2, we shalk give a definition that yields the equivalence
directly, and no additional refinements are needed. To this end, we give in the
following a grammatical characterization for the viable stack strings of shift-reduce
parsers (and prove some lemmas that wiil be of use in proving properties of LR
parsers).

6.1 Viable Prefixes 9
Let G = (V, T, P, S) be a grammar. String ye V* is a viable prefix of G if

§ ==>* Ay == dafly = yBy

holds in G for some strings e V* and ye T* and rule 4 — aﬂ in P. y is a complete
viable prefix if here f =¢.
First we note:

Fact 6.1 Any viable prefix of grammar G is a prefix of some complete viable prefix
of G. O

Most properties of viable prefixes can be derived from the foilowing lemma.

Lemma 6.2 Let G = (V, T, P, S) be a grammar, u a rule string in P*, y, n, and é
strings in V*, A a nonterminal, and y a string in T* such that

{a) S%yryy=6Ay inG, and m#e¢.

In other words, y is a prefix of some nontrivially derived right sentential form not
extending over the last nonterminal. Then there are strings &' in V* and y' in T*, rule
strings ' and ="’ in P* and a ruler = A’ - o'’ in P such that

S ® 5/A! ’f L4 6lal A = 7 s ’ ®" ‘.) s
®) = §Ay == Sdfy =18y, By — .

arn” =mn, and o':1=9y:1.

In other words, derivation (a) contains a segment that proves y to be a viable prefix,
even so that the right-hand side of the rule r “cuts” y properly.

Proof. The proof is by induction on the length of rule string x. If |z| = 1, statement
(a) implies that 7 = S — yny is a rule in P. Statement (b) then holds if we choose
d=y=¢n=n"=¢r=mn o=y and f =ny. We may thus assume that
in! > 1 and, as an induction hypothesis, that the lemma holds for ihe rule strings
shorter than n. Statement (a) then implies the existence of strings é, in V* and y, in
T*, a rule string ©; in P*, and a rule r, = A; = @, such that

) S %’51/“}’1 ';”%’ S ywyyy =yny=28Ay, and miry=m.

Here y; must be a suffix of y, that is, y = xy, for some x. Moreover, either y = §,«
for some o’ # € or §, = ya for some a. In the former case w, = «'nx and statement
(b) hoids if we choose 8’ = 8,,y =y, ® =n,, 0" =g, r=r,,and § = nx. In the
latter case, that is, when 6, = ya, we may write the first derivation segment in (1) as

@ S=smn=564,

10 6. LR (k) Parsing

where 7, denotes a4,. As here n, # ¢ we can apply the induction hypothesis to
Ty, Y N1, 01, A;, and y, and conclude that there are strings &’ in V* and y' in T%,
rule strings n’ and 7n,, and a rule ¥ = A’ - «'f’ such that

S = §AY = SdBY =vBY, BY — my, -
(3

n'rn, =m,, and o&':1=1y:1.

Here we have
L LY
(4 MYy = Ay =aw, vy =y

Recall that ¢, = ye and y = xy,; m (1), and so aw, = yjx. By combining (3) and (4)
and chvosing 7" = m,r, we can conclude that statement () holds. ([

As an immediate consequence of Lemma 6.2 we have:

Lemma 6.3 Let G = (V, T, P, S) be a grammar, § a string in V*, y a string in T*, and
A a nonterminal such that

S == "1 §Ay in G .
rm
Then 3A is a viable prefix of G.
Proof. Choose y =304 and 4 = ¢ in Lemma 6.2. U
As an other application of Lemma 6.2 we prove the feilowing important result.
Lemma 6.4 Any prefix of a viable prefix is a viable prejix.

Procf. Leiy, and y, be strings such that y,y, is a viabie prefix. We prove that y, isa
viabie prefix. By definition,

M S ==>" Ay == Sufy = 7172y

for some n 2 0, string 4, terminal string y, aad rule 4 — off. Here dis a prefix of y,,
or o s ¢and y, is a preiix of &. in the {ormer case. derivation (i) proves y, as a viable
prefix beczuse we may wniie aff as &, where o’ = ¢, aod [= 7, 4. In tac latier
case, we mny write Ay as yy for some . Because d 3 e unplies 1 > 0, we can then

conciude by Lemma 6.2 that y, is a viable prefix. [}

The following lemma states how viable preiixes rightrnost derive viabie prefixes.

Lemma 0.5 Let & =V, T, P, §) be arcduced grammar, y a siring in V*, and A — ofs
arule in P.if vA is a viabie prefix of G, then so is ya.

