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Preface to the Second Printing

For this printing, I have corrected some errors and made numerous minor
changes in the interest of clarity. The most significant corrections occur in
Sections 4.2, 4.3, 5.5, 30.3, 32.1, and 32.3. I have also updated the biblio-
graphy to some extent. Thanks are due to a number of readers who took the
trouble to point out errors, or obscurities : especially helpful were the detailed
comments of José¢ Antonio Vargas.

James E. Humphreys

vit



Preface to the First Printing

Over the last two decades the Borel-Chevalley theory of linear algebraic
groups (as further developed by Borel, Steinberg, Tits, and others) has made
possible significant progress in a number of areas: semisimple Lie groups
and arithmetic subgroups, p-adic groups, classical linear groups, finite
simple groups, invariant theory, etc. Unfortunately, the subject has not
been as accessible as it ought to be, in part due to the fairly substantial
background in algebraic geometry assumed by Chevalley [8], Borel [4],
Borel, Tits [1]. The difficulty of the theory also stems in part from the fact
that the main results culminate a long series of arguments which are hard
to “see through” from beginning to end. In writing this introductory text,
aimed at the second year graduate level. I have tried to take these factors
into account.

First, the requisite algebraic geometry has been treated in full in Chapter
I, modulo some more-or-less standard results from commutative algebra
(quoted in §0), e.g., the theorem that a regular local ring is an integrally
closed domain. The treatment is intentionally somewhat crude and is not
at all scheme-oriented. In fact, everything is done over an algebraically
closed field K (of arbitrary characteristic), even though most of the eventual
applications involve a field of definition k. I believe this can be justified as
follows. In order to work over k from the outset, it would be necessary to
spend a good deal of time perfecting the foundations, and then the only
rationality statements proved along the way would be of a minor sort (cf.
(34.2)). The deeper rationality properties can only be appreciated after the
reader has reached Chapter X. (A survey of such results, without proofs,
is given in Chapter XII.)

Second, a special effort has been made to render the exposition trans-
parent. Except for a digression into characteristic 0 in Chapter V, the
development from Chapter Il to Chapter XI is fairly “linear”, covering
the foundations, the structure of connected solvable groups, and then the
structure, representations and classification of reductive groups. The lecture
notes of Borel [4]. which constitute an improvement of the methods in
Chevalley [8], are the basic source for Chapters II-1V, VI-X, while Chapter
XI is a hybrid of Chevalley [8] and SGAD. From §27 on the basic facts
about root systen's are used constantly; these are listed (with suitable ref-
erences) in the Ap endix. Apart from §0, the Appendix, and a reference to
a theorem of Burnside in (17.5), the text is self-contained. But the reader is
asked to verify some minor points as exercises.

While the proofs of theorems mostly follow Borel [4], a number of
improvements have been made. among them Borel's new proof of the
normalizer theorem (23.1), which he kindly communicated to me.



X Preface to the First Printing

I had an opportunity to lecture on some of this material at Queen Mary
College in 1969, and at New York University in 1971-72. Several colleagues
have made valuable suggestions after looking at a preliminary version of
the manuscript; I especially want to thank Gerhard Hochschild, George
Seligman, and Ferdinand Veldkamp. I also want to thank Michael J. DeRise
for his help. Finally, I want to acknowledge the support of the National
Science Foundation and the excellent typing of Helen Samoraj and her staff.

James E. Humphreys

Conventions

K* = multiplicative group of the field K

char K = characteristic of K

char exp K = characteristic exponent of K, i.e., max {1, char K}
det = determinant

Tr = trace

Card = cardinality

1l = direct sum
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Chapter 1
Algebraic Geometry

0. Some Commutative Algebra

Algebraic geometry is heavily dependent on commutative algebra, the
study of commutative rings and fields (notably those arising from polyno-
mial rings in many variables); indeed, it is impossible to draw a sharp line
between the geometry and the algebra. For reference, we assemble in this
. section some basic concepts and results (without proof) of an algebraic na-
ture. The theorems stated are in most cases “standard” and readily accessible
in the literature, though not always encountered in a graduate algebra course.

We shall give explicit references, usually by chapter and section, to the
following books:

L = S. Lang, Algebra, Reading, Mass.: Addison-Wesley 1965.

ZS = O. Zariski, P. Samuel, Commutative Algebra, 2 vol., Princeton:
Van Nostrand 1958, 1960.

AM = M. F. Atiyah, 1. G. Macdonald, Introduction to Commutative
Algebra, Reading, Mass.: Addison-Wesley 1969.

J = N. Jacobson, Basic Algebra I1, San Francisco: W. H. Freeman 1980.

There are of course other good sources for this material, e.g., Bourbaki
or van der Waerden. We remark that [AM] is an especially suitable reference
for our purposes, even though some theorems there are set up as exercises.

All rings are assumed to be commutative (with 1).

0.1 A ring R is noetherian <> each ideal of R is finitely generated <= R has
ACC (ascending chain condition) on ideals <> each nonempty collection of ideals
has a maximal element, relative to inclusion. Any homomorphic image of a noe-
therian ring is noetherian. [ L, VI§1][AM, Ch. 6, 7]. Hilbert Basis Theorem:
If R is noetherian, so is R[T] (polynomial ring in one indeterminate). In par-
ticular, for a field K, K[T, T,, ..., T,] is noetherian. [L, VI §2] [ZS, IV §1]
[AM,7.5].

0.2 IfKisafield, K[Ty,...,T,]isa UFD (unique factorization domain).
[L, V§6].

0.3 Weak Nullstellensatz: Let K be afield, L = K[x,,...,: x,] afinitely
generated extension ring of K. If L is a field, then all x; are algebraic over K.
[L, X §2] [ZS, VII §3] [AM, 5.24, Ch. 5, ex. 18, 7.9].

0.4 LetL/Kbeafield extension. Elements x,, . . ., x4 € L are algebraically
independent over K if no nonzero polynomial f(T,, ..., T,) over K satisfies
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f(xg, ..., xg) = 0. A maximal subset or L algebraically independent over K is
called a transcendence basis of L/K. Its cardinality is a uniquely defined number,
the transcendence degree tr. deg.c L. If L = K(x,....,> x,), a transcendence basis
can be chosen from among the x;, say x, . .., X3 Then K(x,, . .., x,) is purely
transcendental over K and L/K(x,,. .., x,) is (finite) algebraic. [L, X §1]
[ZS, 11§12][1,8.12].

Liiroth Theorem: Let L = K(T) be a simple, purely transcendental exten-
sion of K. Then any subfield of L properly including K is also a simple, purely
transcendental extension. [J, 8.13].

0.5 Let E/F be a finite field extension. There is a map Ng: E — F, called
the norm, which induces a homomorphism of multiplicative groups E* — F*,
such that Ngg(a) is a power of the constant term of the minimal polynomial of
a over F, and in particular, Nge(a) = al®F) whenever ae F. To define the
norm, view E as a vector space over F. For each a € E, x = ax defines a linear
transformation E — E; let Ng . (a) be its determinant. [L, VIII §5] [ZS, 11 §10].

0.6 Let R o S be an extension of rings. An element x € R is integral over
S <> x is a root of a monic polynomial over S <> the subring S[x] of R is a
finitely generated S- module <> the ring S[x] acts on some finitely generated
S-medule V' faithfully (ie., y.V = 0 implies y = (). R is integral over S if
each element of R is integral over S. The integral closure of S in R is the set
(a subring) of R consisting of all elements of R integral over S. If R is an integral
domain, with field of fractions F, R is said to be integrally closed if R equals
its integral closure in F. If R is integrally closed, so is the polynomial ring
R[T]. [L,IX §1] [ZS, V §1] [AM, Ch.5]

0.7 Noether Normalization Lemma: Let K be an arbitrary field, R =
K[xy, ..., X,] afinitely generated integral domain over K with field of fractions
F, d = tr. deg.« F. Then there exist elements y,, ..., ys€ R such that R is
integral over K[ yy, ..., y4] (and the y; are algebraically independent over K).
[L, X §4] [ZS, V §4] [AM, Ch. 5, ex. 16].

0.8 Let R/S be a ring extension, with R integral over S.

Going Up Theorem: If P is a prime (resp. maximal) ideal of S, there
exists a prime (resp. maximal) ideal Q of R for which Q n S = P.[L, IX §1]
[Zs. V §2] [AM, 5.10, 5.11].

Going Down Theorem: Let S be integrally closed. If P, > P, are prime
ideals of S, Q, a prime ideal of R for which Q; n S = P, there exists a prime
ideal Q, = Q for which Q, n S & P,.[ZS,V §3] [AM, 5.16].

Extension Theorem: Let R/S be an integral extension, K an algebraically
closed field. Then any homomorphism ¢:S — K extends to a homomorphism
¢@":R — K.Ifx € R,a € K, @ can first be extended to a homomorphism S[x] — K
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sending x to a (then be further extended to R, R being integral over S[x]),
provided f(x) = 0 implies f,(a) = 0 jor f(T) € S[T] (f,(T) the polynomial over
K gotten by applying ¢ to each coefficient of f(T)). [L, IX §3] [AM, Ch. 5].

0.9 Let Py, ..., P,beprimeidealsinaring R. If an ideal lies in the union
of the P;, it must already lie in one of them. [ZS, IV §6, Remark p. 215].

0.10 Let S be a multiplicative set inaring R(0¢ S,1 € S,a,he S = abe ).
The generalized ring of quotients S™'R is constructed using "equivalence
classes of pairs (r, s) € R x S, where (r, s) ~ (1, 5') means that for some s” € S,
s"(rs' — r's) = 0. The (prime) ideals of S™'R correspond bijectively to the
(prime) ideals of R not meeting S. In case R is an integral domain, with field
of fractions F, S"'R may be identified with the set of fractions r/s in F. In
general, the canonical map R — S™ 'R (sending r to the class of (r, 1)) is injective
only when S contains no zero divisors. For example, take S = {xX"|ne 7"} for
x not nilpotent, to obtain S 'R, denoted R,; R is a subring of R, provided x
is not a zero divisor. Or take S = R — P, P a prime ideal. Then S™'R is de-
noted Rp and is a local ring (i.e., has a unique maximal ideal PRy, consisting
of the nonunits of Rp). The prime ideals of Rp correspond naturally to the prime
ideals of R contained in P. If R is an integrally closed domain, then so is Rp. If
R is noetherian, so is Rp. If M is a maximal ideal, the fields R/M and Ry;/MR,,
are naturally isomorphic, the canonical map R — R, induces a vector space iso-
morphism of M/M?* onto MR, /(MRy)*. [L, I1 §3] [AM, Ch. 3].

0.11 Nakayama Lemma: Let R be a ring, M a maximal ideal, V a
finitely generated R-module for which V.= MV. Then there exists x ¢ M such
that xV = 0. In particular, if R is local (with unique maximal ideal M), x must
be a unit and therefore V = 0. [AM,2.5,2.6] [L, X §1].

0.12  If R is a (noetherian) local ring with maximal ideal M, the powers of
M can be taken as a fundamental system of neighborhoods of 0 for a topology
(the M-adic topology) on R. This topology is Hausdorff, since [| M" = 0.
[AM, §10] [ZS, 1V §7, VIII §2]. The Krull dimension of R is the maximum
length k of a chain of prime ideals 0 S P, G P, S -+ G P, G R.If this
equals the minimum number of generators of M, R is called regular. Theorem:
A regular local ring is an integral domain, integrally closed (in its field of
fractions). [AM, Ch. 11][ZS, VIII §11; cf. Appendix 7].

0.13 Let I be an ideal in a noetherian ring R, and let Py, ..., P, be the
minimal prime ideals containing I. The image of P, n---n P, in R/l is
the nilradical of R/I, a nilpotent ideal. In particular, for large enough n,
PiPy---Plc(Pyn- nP) < I.[AM,7.15] [L, VI §4].

0.14 A field extension E/F is separable if either char F = 0, or else char
F = p > 0 and the p" powers of elements x,, . . ., x, € E linearly independent
over F are again so. This generalizes the usual notion when E/F is finite.
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E = F(xy,...,X,) is separably generated over F if E is a finite separable
extension of a purely transcendental extension of F. For finitely generated
extensions E/F, “separably generated” is equivalent to “separable”, and E/F
is automatically separable when F is perfect. If F < L < E, E/F separable,
then L/F is separable. If F = L < E, E/L and L/F separable, then E/F is
separable [ZS, IT §13] [L, X §6] [J, 8.14].

0.15 A derivation 0:E — L (E afield, L an extension field of E), is a map
which satisfies 8(x + y) = d(x) + d(y) and é(xy) = x 6(y) + d(x) y. IfFisa
subfield of E, d is called an F-derivation if in addition 6(x) = O for all x € F (so
d is F-linear). The space Der(E, L) of all F-derivations E — L is a vector space
over L, whose dimension is tr. deg.; E if E/F is separably generated. E/F is
separable if and only if all derivations F — L extend to derivations E — L (L
an extension field of E). If char E = p > 0, all derivations of E vanish on the
subfield E” of p™ powers. [ZS, 11 §17] [J,8.15] [L, X §7].

1. Affine and Projective Varieties

In this section we consider subsets of affine or projective space defined
by polynomial equations, with special attention being paid to the way in
which geometric properties of these sets translate into algebraic properties
of polynomial rings. K always denotes an algebraically closed field, of
arbitrary characteristic.

1.1. Ideals and Affine Varieties

The set K" = K x -+ x K will be called affine n-space and denoted A"
By affine variety will be meant (provisionally) the set of common zeros in
A" of a finite collection of polynomials. Evidently we have in mind curves,
surfaces, and the like. But the collection of polynomials defining a geometric
configuration can vary quite a bit without affecting the geometry, so we aim
for a tighter correspondence between geometry and algebra. As a first step,
notice that the ideal in K[T] = K[T,, ..., T,] generated by a set of polyno-
mials { f;(T)} has precisely the same common zeros as { f,(T)}. Moreover, the
Hilbert Basis Theorem (0.1) asserts that each ideal in K[T] has a finite set of
generators, so every ideal corresponds to an affine variety. Unfortunately,
this correspondence is not 1 -1: e.g.. the ideals generated by T and by T? are
distinct, but have the same zero set {0} in A’. We shall see shortly how to
deal with this phenomenon.

Formally, we can assign to each ideal I in K[T] the set ¥ (/) of its common
zeros in A", and to each subset X < A" the collection .#(X) of all polynomials
vanishing on X. It is clear that .#(X) is an ideal, and that we have inclusions:

X < ¥ (J(X)),
I < (v (1))
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Of course, neither of these need be an equality (examples?). Let us examine
more closely the second inclusion. By definition, the radical /T of an ideal
Iis { f(T) e K[T]|f(TY € I for some r > O}. This is easily seen to be an ideal,
including I. If f(T) fails to vanish at x = (xy,. ... x,), then f(T)" also fails
to vanish at x for each r > 0. From this it follows that /I = #(¥(I)), which
refines the above inclusion. Indeed, we now get equality—a fact which is
crucial but not at all intuitively obvious.

Theorem (Hilbert’s Nullstellensatz). If I is any ideal in K[Ty, ..., T,],
then I = #£(¥(I)).

Proof. In view of the finite generation of I, the theorem is equivalent to
the statement: “Given f(T), fi(T),..., f(T) in K[T], such that f(T) vanishes at
every commor zero of the f; (T) in A" there exist r > 0 and ¢,(7),...,

g4 T) € K[T] for which f(T)" = Z g:{(T)f(T).”
We show first that this statement follows from the assertion:
(*) If¥(I)=0 then I=K[T]

(Notice that this is just a special case of the theorem, since only the ideal
K[T] can have K[T] as radical!) Indeed, given f(T), fi(T),..., f{(T) as in-
dicated, we can introduce a new indeterminate T, and consider the collection
of polynomials in n + 1 indeterminates, f;(T),..., fi(T), 1 — Tof(T). These
have no common zero in A"**, thanks to the original condition imposed on
f(T), so (*) implies that they generate the unit ideal. Find polynomials
h(To, ..., T, and A(Ty, ..., T,) for which 1 = h(Ty, T)VAM) + -+ +
hy(To, T)A(T) + A(To, T)(1 — T, f(T)). Then substitute 1/f(T) for T, through-
out, and multiply both sides by a sufficiently high power f(T)" to clear
denominators. This yields a reiation of the desired sort.

It remains to prove (*), or equivalently, to show that a proper ideal in
K[T] has at least one common zero in A" (In the special case n = 1, this
would follow directly from the fact that K is algebraically closed.) Let us
attempt naively to construct a common zero. By Zorn’s Lemma, I lies in some
maximal ideal of K[T], and common zeros of the latter will serve for I as
well; so we might as well assume that / is maximal. Then the residue class
ring L = K[T]/I is a field; K may be identified with the residue classes of
scalar polynomials. If we write ¢; for the residue class of T, it is clear that
L = K[ty,...,t,] (the smallest subring of L containing K and the t;). More-
over, the n-tuple (¢, . . ., ,) is by construction a common zero of the polyno-
mials in . If we could identify L with K, the t; could already be found inside
K. But K is algebraically closed, so for this it would be enough to show that
the t; are algebraic over K, which is precisely the content of (0.3). [

The Nullstellensatz (“zeros theorem”) implies that the operators ¥, . set
up a 1-1 correspondence between the collection of all radical ideals in K[T]
(ideals equal to their radlcal) and the collection of all affine varicties in A"
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Indeed, if X = ¥°(I), then #(X) = £(¥'(I)) = v 1, so that X may be re-
covered as ¥ (#(X)) (I and+/I having the same set of common zeros). On
the other hand, if I = /I, then I may be recovered as .#(¥"(I)). Notice that
the correspondences X — #(X) and I — ¥(I) are inclusion-reversing. So the
noetherian property of K[T] implies DCC (descending chain condition) on
the collection of affine varieties in A"

Examples of radical ideals are prime (in particular, maximal) ideals. We
shall exdmine in (1.3) the varieties corresponding to prime ideals. For the
moment, just consider the case X = ¥7(I), I maximal. The Nullstellensatz
guarantees that X is nonempty, so let x € X. Clearly I < #({x}) S K[T],
so I = #({x}) by maximality, and X = ¥'(I) = ¥(H4({x})) = {x}. On the
other hand, if x € A", then f(T) — f(x) defines a homomorphism of K[ T] onto
K, whose kernel .#({x}) is maximal because K is a field. Thus the points of
A" correspond 1-1 to the maximal ideals of K[T].

A linear variety through x € A" is the zero set of linear polynomials of
the form ) ai(T; — x;). This is just a vector subspace of A" if the latter is
viewed as a vector space with origin x. From the Nullstellensatz (or linear
algebra!) we deduce that any linear polynomial vanishing on such a variety
is a K-linear combination of the given ones.

1.2. Zariski Topology on Affine Space

If K were the field of complex numbers, A" could be given the usual
topology of complex n-space. Then the zero set of a polynomial f(T) would
be closed, being the inverse image of the closed set {0} in C under the con-
tinuous mapping x — f(x). The set of common zeros of a collection of
polynomials would equally well be closed, being the intersection of closed
sets. Of course, complex n-space has plenty of other closed sets which are
unobtainable in this way, as is clear already in case n = 1.

The idea of topologizing affine n-space by decreeing that the closed sets
are to be precisely the affine varieties turns out to be very fruitful. This is
called the Zariski topology. Naturally, it has to be checked that the axioms
for a topology are satisfied: (1) A” and () are certainly closed, as the respective
zero sets of the ideals (0) and K[T]. (2) If I, J are two ideals, then clearly
¥ (I)u ¥ (J) € ¥ (I n J). To establish the reverse inclusion, suppose x is a
zero of I n J,but not of I or J. Say f(T) € I, g(T) € J, with f(x) # 0, g(x) # O.
Since f(T)g(T)e I n J, we must have f(x)g(x) = 0, which is absurd. This
argument implies that finite unions of closed sets are closed. (3) Let I, be an
arbitrary collection of ideals, so ) , I, is the ideal generated by this collec-
tion. Then it is clear that [|,¥7(I,) = ¥ (3. I.), i.e., arbitrary intersections of
closed sets are closed.

What sort of topology is this? Points are closed, since x = (x;,..., X,)
is the only common zero of the polynomials T, — x,,..., T, — x,. But the
Hausdorff separation axiom fails. This is evident already in the case of A?,



