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I criticize by creation, not by finding fault.

Cicero

Philosophy is written in this grand book, the universe, which stands continually
open to our gaze, But the book cannot be understood unless one first learns to
comprehend the language and read the letters in which it is composed. It is
written in the language of mathematics, and its characters are triangles, circles,
and other geometric figures without which it is humanly impossible to
understand a single word of it; without these, one wanders about in a dark
labyrinth.

Galileo
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Introduction

The thesis of these books is both simple and audacious. It is so simple that the basic
claims can be reduced to two sentences. First: the most fundamental geometrical
structure that organizes physical points into a space is the line.' Second: what endows
spacetime with its geometry is time. The remainder of these two volumes does nothing
but elucidate those sentences. Everything flows from them in such a straightforward
way that I am almost convinced that the reader could stop reading forthwith and, with
sufficient patience and diligence, reconstruct most of what follows from these two
propositions.

As for the audacity, acceptance of either of these propositions demands the rejection
of widely held and deeply entrenched alternatives. Consider a collection of objects that
we wish to regard as forming not merely a set (which it does automatically) but as
forming a space. Organizing the set into a space requires something more than the set-
theoretic structure. What, at the most primitive level, is this “something else”?

For over a century, the mathematical subject devoted to this question has been
topology. In topological theory, the fundamental structure that organizes a set into a
space—organizes it so that notions such as the continuity of a function and the
boundary of a set can be defined—is the open set. One specifies the topology of a
space by specifying which of its subsets are open sets. All the topological character-
istics of the space are then determined by the structure of its open sets.

Topology is sometimes called “rubber sheet geometry” because it describes geo-
metrical characteristics of a space that are preserved under “stretching” the space
without tearing or pasting. It is not obvious what should be meant by “tearing” or
“pasting” a space, but the salient point is that topology concerns some sort of
geometrical structure that is independent of distances. Intuitively, stretching can
change the distances between points, but will not change, for example, whether one
point is enclosed by another set of points. As we will say, topology concerns the
submetrical structure of a space. Standard topology asserts that the specification of the
open sets confers this structure on the space.

I will offer an alternative mathematical tool—a different way of understanding
submetrical structure. This requires constructing a competitor to standard topology,

! The word “line” sometimes connotes only straight lines. The intention here is a usage that covers both
straight and curved lines, since we will be considering a level of abstraction at which the distinction
between straight and curved does not exist.
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which T call the Theory of Linear Structures. Simply put, specifying the Linear
Structure of a space amounts to specifying which sets of points in the space are
lines. In terms of the lines, notions such as the continuity of a function, the
boundaries of a set, and the connectedness of a space are defined. These definitions
sometimes render different verdicts than the standard topological definitions and
have a wider sphere of natural application. My burden is to show that we do better,
when considering the geometrical structure of a physical space, by thinking in terms
of the Linear Structure of the space than in terms of its open sets, If I am right, then
the standard mathematical tools used for analyzing physical geometry have, for over
a hundred years, been the wrong tools.

So the first task to be tackled is purely mathematical: to present, from its founda-
tions, a new method of analyzing submetrical structure. Anyone familiar with the
tremendous scope and complexity of topology will appreciate the audacity men-
tioned previously. Topology is the subject of hundreds of books and many thousands
of papers in mathematics. Recovering or recasting the results of standard topological
analysis in terms of Linear Structures would be the work of several lifetimes. So all
that can be done here is to lay the foundations, to show how the most basic concepts
defined in standard topology can be given alternative definitions in the Theory of
Linear Structures. This first volume of New Foundations is devoted to this task, and
will not cover even as much territory as the most elementary introduction to
standard topology. If I am able to convince the reader of the value of this new
approach, it will not be by seeing farther than with the standard theory, but by
looking deeper. I will try to show that the definitions and analyses available in the
Theory of Linear Structures offer a better understanding of geometrical structure,
and allow for definitions that more closely capture the intuitive notions we are trying
to explicate, than do the standard definitions. We understand geometrical structure
better if we think in terms of lines rather than open sets.

Even if one comes to share this assessment, still the magnitude of the task I am
suggesting may render the undertaking slightly absurd. It is rather like noticing that
the Empire State Building would have been better situated had it been built a few
blocks over and turned on an angle. One may agree with the appraisal, but still be
reluctant to go to the trouble to reconstruct on better foundations. Maybe standard
topological theory is not the best way to understand physical geometry, but it is still
good enough. Thomas Kuhn observed: “As in manufacture, so in science—retooling is
an extravagance to be reserved for the occasion that demands it” (Kuhn, 1996, p. 76).
Persuasive arguments that such an occasion has arisen are hard to come by, and the
more extensive the retooling, the more persuasive they must be. Following common
practice when confronting such problems, I will resort to both a carrot and a stick.

The stick consists in a critique of standard topology. Of course, the issue is not a
mathematical one: standard topology is a perfectly well-defined mathematical subject
with rigorous and wide-ranging results. Rather, the critique is conceptual.
A formalized mathematical subject such as topology is devised in the first place to
capture, in a clear and precise language, certain informal concepts already in use. It is



INTRODUCTION 3

only because we begin with some grasp of a subject like geometrical structure that we
seek strict definitions in the first place. Those formalized definitions can do a better
or worse job of capturing the informal concepts whose names they inherit. It may be
tempting to think that this is a purely semantic debate, in the pejorative sense of that
term: after all, if someone wants to define a word like “continuous” or “connected” or
“boundary” using the resources of standard topology, who is to object? As long as the
definition is given, one can regard the term as nothing but an abbreviation, a concise
way to refer to the defined concept. Such an approach makes the whole project of
criticizing formal definitions appear wrong-headed.

But the situation is subtler than that. Certain mathematical terms are not chosen
arbitrarily, but are used because we already have some understanding of them. Long
before the formal theory of topology was developed, mathematicians had something
in mind when they characterized a function as continuous or a space as connected.
Their concepts may have been somewhat imprecise, but everyone would have
accepted some clear instances of continuous and discontinuous functions. For
example, the sine function is a continuous function and the step function is not.
And beyond these particular examples, notions such as continuity would be expli-
cated by informal definitions, So when the topologist seeks to define “continuity” in
her proprietary technical language, she is not entirely free. The definition must be
shown to correspond—to the extent that a formally defined notion can correspond to
a more informal and fuzzy one—with the concept with which one began. If it does
not, then the formal theory has failed in its aim.

In the first chapter of the Physics, Aristotle characterized the method of science as
starting from those things that are clearer and more knowable to us and proceeding
to those things that are clearer and more knowable in themselves. The mathematical
elucidation of geometrical structure must proceed in the same way: one starts with
the familiar, though somewhat obscure, and proceeds to the clearly and exactly
defined. The fundamental axioms and definitions are presented in a more rigorous
technical vocabulary, and then the initial notions are defined, and illuminated, by
means of the technical notions. One returns to the starting point with a deeper
understanding. But if one of the tasks is to explicate those initial concepts, then one
should carefully consider whether the technical definitions have done justice to the
original concepts, at least where their application was clear and uncontroversial.

Different readers will probably have wildly divergent reactions to these criticisms
of standard topology. In particular, readers already familiar with the standard
definitions—especially mathematicians or physicists who commonly use the stand-
ard theory—will have so internalized the standard definitions that those definitions
express what they now mean by terms such as “continuous”. These readers will have to
make an effort to recall the original, somewhat amorphous, concepts that stood in
need of clarification. And given the utility of the formalized notion, such readers are
likely to see no point in trying to capture some more naive notion. On the other hand,
readers with little background in standard topology have the double task of learning
the standard definitions and evaluating criticisms of them at the same time. They
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may be more open to accepting the critique, but also less concerned about it in the
first place. So I will not place too much weight on these shortcomings of the standard
theory; though I will point them out nonetheless.

Perhaps a more effective line of attack concerns the scope of application of the
standard theory. Topology was initially developed as a tool for describing certain
spaces—a central example being Euclidean space. In particular, the spaces most
naturally suited for topological treatment are continua (we leave to later sections
the discussion of exactly what this means!). But the single most important object of
which we need a geometrical account is physical space (or spacetime), and there is no
guarantee that physical space is a continuum. Indeed, many physicists believe that at
a sufficiently fine scale physical space is discrete rather than continuous. If standard
topology is not an effective tool for articulating the geometrical structure of discrete
spaces, then it may not be well suited for the primary requirements of physics. It
would, in any case, be preferable to have an account of geometrical structure that can
be applied with equal ease to discrete and continuous spaces. The Theory of Linear
Structures can be so applied.

Sticks, however, will never be enough to drive mathematicians and physicists out
of the precincts of standard topology. Even if the standard approach is somehow
flawed, they will reasonably demand a viable alternative. So the onus of persuasion
must rest with the carrot: the Theory of Linear Structures must be sufficiently
intriguing in its own right to attract interest. I cannot claim unbiased judgment
here, but I can attest that playing with the theory is a tremendous amount of fun. One
is given a set of primitives (the lines), and then one has to try to fashion reasonable
definitions of other geometrical notions in terms of them. Often it is not obvious how
to do this, and many alternative strategies present themselves. For example, once the
set of lines in a space has been specified, how can one define what it means for a set of
points to be open, or closed, or for one set of points to be the boundary of another, or
for a set to be connected, or for a function from one space to another to be
continuous? There is no mechanical algorithm for producing such definitions, nor
any indisputable standard by which a proposed definition can be evaluated. One
wants the definitions to be natural and to yield intuitively correct results, but one also
wants the definitions to lead to interesting theorems. That is, the properties invoked in
the definitions need to be exactly those properties from which other interesting
results can be derived. But the fecundity of definitions is only established by the
production of proofs. A fascinating dialectic therefore develops: one proposes a
definition and then sees whether interesting proofs using the defined properties are
forthcoming. If the proofs require slightly different properties, then the definitions
can be adjusted.” Given the nature of the dialectic, one is always left uncertain

% For a delightful discussion of this dialectic in the search for formal definitions of informal concepts, see
Imre Lakatos’s Proof and Refutations (1976). My own experience in trying to formulate definitions in terms
of the Linear Structure corresponds exactly to Lakatos’s description.
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whether better definitions are not possible: one needs the definitions to generate the
proofs, but one only gets a sense of how fecund the definitions are once the proofs are
available. If the foregoing description seems too abstract, I can recommend only that
the reader try it: once the basic axioms of a Linear Structure have been specified, try
to construct definitions of terms like “open set” or “continuous function”. I hope that
especially mathematicians and physicists will give this a shot, and see how easy it is to
become hooked. The feeling of productive conceptual play is the ultimate carrot that
I have to offer.

The first feat of audacity, then, is to contend that the most well-entrenched
approach to the formal analysis of geometrical structure should be forsaken, in
some contexts, for a completely new one. In the spirit of fair play, the second thesis
should be as outrageous to physicists as the first is to mathematicians. For if one
accepts the use of Linear Structures to articulate submetrical geometry, then the
foremost physical question that confronts us is: what accounts for the Linear Structure
of physical spacetime? I claim that the geometry of spacetime is produced by time.

Why should such a claim be considered audacious? Because it reverses the
common wisdom about the theory of Relativity. Relativity is often taken to imply
that time is “just another dimension” like a spatial dimension, so the notion that
there is anything physically special about time (as opposed to space) is outmoded
classical thinking. Relativity is said to postulate a “four-dimensional block universe”
which is “static”, and in which the passage of time is just an illusion. Einstein himself
wrote, after the death of his great friend Michele Besso, that “[f]or those of us who
believe in physics, this separation between past, present, and future is only an
illusion, however tenacious” (Einstein, 1972, p. 258). In short, Relativity is commonly
characterized as having spatialized time; that is, of having put the temporal dimen-
sion on an equal physical footing with the spatial dimensions, and of having thereby
robbed time of any fundamental difference from space.

My contention is just the opposite: the theory of Relativity shows, for the first time
in the history of physics, how to temporalize space. In Relativity, but not in any
preceding classical theory, one can regard time as the basic organizing structure of
spacetime. In a precise sense, spacetime has geometrical structure only because it has
temporal structure, and insofar as there is spatial geometry at all, it is parasitic on
temporal structure. The argument to this conclusion is straightforward: the (subme-
trical) geometry of spacetime is determined by its Linear Structure, and the Linear
Structure of a Relativistic spacetime is determined by its temporal structure. So rather
than somehow demoting time from its position in classical physics, Relativity promotes
time to a more central position. This thesis will be the topic of the second volume of
New Foundations, which will begin with a short recap of the basic mathematical results,
so readers more interested in the physics than the mathematics may prefer that volume
to this. For mathematicians, the opposite preference may hold.

Having touted the outrageousness of these books’ central claims, let me now calm
the waters. Regarding the physical thesis, we should immediately note that the special
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geometrical role of time in structuring spacetime is not, at a technical level, at all
contentious. The standard account of spacetime structure in Relativity permits a
simple temporal characterization of time-like lines while no parallel characterization
of space-like lines exists. The only real bone of contention here will be the signifi-
cance of that fact.

With regard to the mathematical claim, let me reiterate that there is nothing wrong
per se with standard topology as a tool of mathematical analysis. Many questions can
be properly and insightfully addressed by standard topological analysis. The weak-
ness of standard topology emerges chiefly when treating the specific subject of
geometrical space. But what exactly do I mean by that term?

Metaphorical and Geometrical Spaces

In the right context, almost any collection of objects can be considered to form a
“space”. For example, if one is studying Newtonian mechanics, such as Newton’s
theory of gravity applied to point particles, it is natural to speak of “the space of
solutions” of Newton’s equations of motion. Each “point” in this space, each
individual element, describes the motions of a set of particles governed by Newtonian
gravity. There is an intuitive sense—which can be made technically precise—in the
which various solutions can be “closer” or “farther” from one another, and hence an
intuitive sense in which the whole set of solutions can be thought of as having a
“geometry”. But this sort of talk of a “space” is evidently not literal. This “space” is, in
an obvious sense, a metaphorical space; it is just a way of talking about the solutions
and a measure of similarity among them. Analogously, philosophers are wont to
speak of “logical space” as the set of all possible worlds. But this set also only forms a
“space” in a metaphorical sense: space talk is just a picturesque means of discussing
various ways and degrees that individual possible worlds are similar to one another.

In contrast, consider Euclidean space, the subject matter of Euclidean geometry.’
Euclidian space is an abstract object in the way that all mathematical objects are
abstract. But Euclidian space is not just metaphorically a space. When we say that one
point in Euclidian space is “closer” to another than it is to a third, we are not
suggesting that the first point is more similar to the second than to the third in any
way. Indeed, intrinsically the points of Euclidian space are all exactly alike: they are
all, in themselves, perfectly identical. The points of Euclidian space, unlike the
“points” of the space of solutions to Newton’s equations, really are points: they
have no internal structure. The “points” of the space of solutions form a (metaphor-
ical) “space” only because they are highly structured and different from one another.

* Just exactly what this means is not perfectly clear! Euclid thought he was studying the structure of
physical space, but we now take that view to be mistaken. Still, Euclidean geometry seems to have a subject
matter: for example, certain constructible figures in the Euclidean plane. Our understanding of what is
meant by “the Euclidean plane” seems to be sharp enough to pick out an abstract structure fairly precisely.



