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Preface

Solitons in physics and solitons in optics are well-established contemporary topics,
addressed in a large number of scientific papers and several books. Spatial optical
solitons form a specific class, as optics in space is characterized by diffraction
rather than dispersion, beam size rather than pulse duration, one or two trans-
verse dimensions rather than one in the temporal domain. For a long time, the
available experimental observations of optical solitons in space were limited by
the magnitude of the material nonlinearities, until molecular and photorefractive
media allowed investigating them at low power and with continuous-wave sources,
including incoherent ones. Among the well-known molecular dielectrics exhibiting
a large optically nonlinear response were liquid crystals, typically employed in
thin samples. It was realized in the early days of both nonlinear optics and liquid
crystals that the reorientational response of nematic liquid crystals could lead to
quite impressive effects, both in the electro-optic and all-optical domains. Later on,
beam propagation over extended distances in nematic liquid crystals was exploited
to demonstrate self-focusing and related phenomena, until it became clear that opti-
cal spatial solitons could be supported by such a response at the molecular level.
I came across light self-localization in nematic liquid crystals during international
meetings, where I attended the inspiring presentations by Prof. M. Karpierz (Poland)
and Prof. M. Warenghem (France) on light self-confinement in nematic liquid crys-
tals, and decided to get involved in research on nematicons. The discussions with
Prof. 1. C. Khoo were enlightening and the collaboration with Prof. C. Umeton
allowed the program to get started on the right foot. The term “nematicon” was
actually coined during a car trip in Poland as I was having a conversation on the
topic with M. Karpierz and G. 1. Stegeman. The Greek root veupatikoo means
“filament-like™ or “spaghetti-like,” appropriate to both the topic and the culinary
culture of someone like me, of Italian birth and upbringing.

This is the first book specifically dealing with spatial optical solitons in nematic
liquid crystals. It is a multiauthor contribution to the field and contains review
as well as original (previously unpublished) material, from theoretical models to
advanced numerical simulations and from experimental observations to applica-
tions. The various contributors and chapters have been selected and invited in
order to cover most of the relevant activities in this field over the past 12 years.

G. ASSANTO

Italy
February 2012
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