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Preface

In mathematics, and more specifically in algebra, a ring is an
algebraic structure with operations generalizing the arithmetic
operations of addition and multiplication. By means of this
generalization, theorems from arithmetic are extended to non-
numerical objects like polynomials, series, matrices and functions.
Rings were first formalized as a common generalization of Dedekind
domains that occur in number theory, and of polynomial rings and
rings of invariants that occur in algebraic geometry and invariant
theory. They are also used in other branches of mathematics such as
geometry and mathematical analysis. The formal definition of rings
is relatively recent, dating from the 1920s. Briefly, a ring is an abelian
group with a second binary operation that is distributive over the
abelian group operation and is associative. The abelian group operation
is called “addition” and the second binary operation is called
“multiplication” in analogy with the integers. One familiar example
of a ring is the set of integers. The integers are a commutative ring,
since a times b is equal to b times a. The set of polynomials also forms
a commutative ring. An example of a non-commutative ring is the ring
of square matrices of the same size. Finally, a field is a commutative
ring in which one can divide by any nonzero element: an example is
the field of real numbers.

Whether a ring is commutative or not has profound implication
in the study of rings as abstract objects, the field called the ring
theory. The development of the commutative theory, commonly known
as commutative algebra, has been greatly influenced by problems and
ideas occurring naturally in algebraic number theory and algebraic
geometry: important commutative rings include fields, polynomial
rings, the coordinate ring of an affine algebraic variety, and the ring
of integers of a number field. On the other hand, the noncommutative
theory takes examples from representation theory, functional analysis
and the theory of differential operators, and the topology. In
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mathematics, specifically in ring theory, an algebra over a commutative
ring is a generalization of the concept of an algebra over a field, where
the base field K is replaced by a commutative ring R. Noetherian rings
and their modules occur in many different areas of mathematics. A
hundred years ago Hilbert, in the commutative setting, used properties
of noetherian rings to settle a long-standing problem of invariant
theory. Later, it was realised that commutative noetherian rings are
one of the building blocks of modern algebraic geometry, leading to
their study both abstractly and in examples. It was not until the late
1950’s, with the appearance of Goldie’s theorem, that it became clear
that non-commutative noetherian rings constitute an interesting class
of rings in their own right. As in the commutative case, non-
commutative noetherian rings are studied in abstraction and in
examples.

The present book explores commutative ring theory, an important
a foundation for algebraic geometry and complex analytical geometry.
It will be a very useful informative book for graduate students and
professionals in engineering and mathematical sciences.

—Ed:tor
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Chapter 1

Infroduction

Ring Theory

In abstract algebra, ring theory is the study of rings—algebraic
structures in which addition and multiplication are defined and have
similar properties to those operations defined for the integers. Ring
theory studies the structure of rings, their representations, or, in
different language, modules, special classes of rings (group rings,
division rings, universal enveloping algebras), as well as an array of
properties that proved to be of interest both within the theory itself
and for its applications, such as homological properties and polynomial
identities.

Commutative rings are much better understood than
noncommutative ones. Algebraic geometry and algebraic number
theory, which provide many natural examples of commutative rings,
have driven much of the development of commutative ring theory,
which is now, under the name of commutative algebra, a major area
of modern mathematics.

Because these three fields are so intimately connected it is usually
difficult and meaningless to decide which field a particular result
belongs to. For example, Hilbert’s Nullstellensatz is a theorem which
is fundamental for algebraic geometry, and is stated and proved in
terms of commutative algebra. Similarly, Fermat’s last theorem is
stated in terms of elementary arithmetic, which is a part of commutative
algebra, but its proof involves deep results of both algebraic number
theory and algebraic geometry.

Noncommutative rings are quite different in flavour, since more
unusual behaviour can arise. While the theory has developed in its
own right, a fairly recent trend has sought to parallel the commutative
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development by building the theory of certain classes of
noncommutative rings in a geometric fashion as if they were rings
of functions on (non-existent) ‘noncommutative spaces’.

This trend started in the 1980s with the development of
noncommutative geometry and with the discovery of quantum groups.
It has led to a better understanding of noncommutative rings, especially
noncommutative Noetherian rings. (Goodearl 1989)

History

Commutative ring theory originated in algebraic number theory,
algebraic geometry, and invariant theory. Central to the development
of these subjects were the rings of integers in algebraic number fields
and algebraic function fields, and the rings of polynomials in two or
more variables.

Noncommutative ring theory began with attempts to extend the
complex numbers to various hypercomplex number systems. The
genesis of the theories of commutative and noncommutative rings
dates back to the early 19th century, while their maturity was achieved
only in the third decade of the 20th century.

More precisely, William Rowan Hamilton put forth the quaternions
and biquaternions; James Cockle presented tessarines and
coquaternions; and William Kingdon Clifford was an enthusiast of
split-biquaternions, which he called algebraic motors. These
noncommutative algebras, and the non-associative Lie algebras, were
studied within universal algebra before the subject was divided into
particular mathematical structure types. One sign of re-organisation
was the use of direct sums to describe algebraic structure.

The various hypercomplex numbers were identified with matrix
rings by Joseph Wedderburn (1908) and Emil Artin (1928).
Wedderburn’s structure theorems were formulated for finite-
dimensional algebras over a field while Artin generalized them to
Artinian rings.

In 1920, Emmy Noether, in collaboration with W. Schmeidler,
published a paper about the theory of ideals in which they defined
left and right ideals in a ring. The following year she published a
landmark paper called Idealtheorie in Ringbereichen, analyzing
ascending chain conditions with regard to (mathematical) ideals. Noted
algebraist Irving Kaplansky called this work “revolutionary”; the
publication gave rise to the term “Noetherian ring”, and several other
mathematical objects being called Noetherian.
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The Development of Ring Theory

Any book on Abstract Algebra will contain the definition of a ring.
It will define a ring to be a set with two operations, called addition
and multiplication, satisfying a collection of axioms. These axioms
require addition to satisfy the axioms for an abelian group while
multiplication is associative and the two operations are connected by
the distributive laws.

A ring is therefore a setting for generalising integer arithmetic.
Familiar examples of rings such as the real numbers, the complex
numbers, the rational numbers, the integers, the even integers, 2 1 2
real matrices, the integers modulo m for a fixed integer m, will almost
certainly be given in the Abstract Algebra book as will many beautiful
theorems on rings but what will be missing are the reasons systems
satisfying these particular axioms have been singled out for such
intensive study. What motivated this abstract definition of a ring?

In this article we shall be concerned with the development of the
theory of commutative rings (that is rings in which multiplication is
commutative) and the theory of non-commutative rings up to the
1940’s. These two theories were studied quite independently of each
other until about 1930 and as traces of the commutative theory appear
first it is with this theory that we begin. Our comment above that
study of a ring provided a generalisation of integer arithmetic is the
clue to the early development of commutative ring theory. For example
Legendre and Gauss investigated integer congruences in 1801.
However, the motivation for generalising arithmetic came mostly
from attempts-to prove Fermat’s Last Theorem. This theorem, proved
as recently as 1995, states:

The equation x"+ y"= z" has no solution for positive integers x, v,
z when n > 2.

This statement, thought to have been made in the late 1630’s,
was found in the marginal notes that Fermat had made in Bachet’s
translation of Diophantus’s Arithmetica.

Attempts to prove this result led to proofs in the following special
cases:

n=4 Fermat about 1640
n=38 Euler 1753
n==5 Legendre and Dirichlet 1825
n=14 Dirichlet 1832
n="17 Lamé 1839
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Euler’s work on the case n = 3 involved extending ordinary
integer arithmetic to apply to the ring of numbers of the form a +
bV-3 where a, b are integers. However, Euler failed to grasp the
difficulties of working in this ring and made certain assertions which,
although true, would be hard to justify.

In 1847 Lamé announced that he had a solution of Fermat’s Last
Theorem and sketched out a proof. Liouville suggested that the proof
depended on a unique decomposition into primes which was unlikely
to be true. However, Cauchy supported Lamé.

The argument which followed indicates the totally different
atmosphere surrounding mathematical research of this period from
that which we know today. Perhaps we could illustrate the point
causing this argument. Complex numbers of the form a + bV-3, where
a, b are integers, form a ring. A prime number in this ring is defined
in an analogous way to a prime integer, namely a number whose only
divisors of the form a + bV-3 other than itself are those numbers with
multiplicative inverses. In this ring 4 can be written as a product of
prime numbers in two different ways

4=22and 4 = (1 + V-3)x(1 -V-3).

Gauss had proved around 1801 that numbers of the form a + bV-
1, where a, b are integers, could be written uniquely as a product of
prime numbers of the form a + bV-1 in an analogous manner to the
unique decomposition of an integer as a product of prime integers.
In fact, numbers of the form a + b +¢® where a, b, ¢ are integers and
is a complex cube root of 1, also have unique factorisation, and this
can be used to prove the n = 3 case of Fermat’s last Theorem.

The argument following Lamé’s announcement was settled by
Kummer who pointed out that he had published an example in 1844
to show that the uniqueness of such decompositions failed and in 1846
he had restored the uniqueness by introducing “ideal complex numbers”.
He then saw the relevance of his theory to Fermat’s Last Theorem.
The popular story that Kummer invented “ideal complex numbers”
in an attempt to correct an error in this proof of Fermat’s Last
Theorem is almost certainly false. In 1847, just after Lamé’s
announcement, Kummer used his “ideal complex numbers” to prove
Fermat’s Last Theorem for all n < 100 except n = 37, 59, 67 and 74.

Up to this point we are still firmly within the realms of number
theory but the genius of Dedekind pinpointed the important properties
of the “ideal complex numbers”. Dedekind defined an “ideal”,
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characterising it by its now familiar properties: namely that of being
a subring whose elements, on being multiplied by any ring element,
remain in the subring.

Ring theory in its own right was born together with an early hint
of the axiomatic method which was to dominate algebra in the
20"Century. Dedekind also introduced the word “module” (early
spelling: “modul”) in 1871 although its initial definition was
considerably more restricted than the present definition, being first
introduced as a subgroup of the additive group of a ring; the term is
now used for a “vector space with coefficients from a ring”.

Prime numbers were generalised to prime ideals by Dedekind in
1871. A prime ideal is an ideal which contains the product of two
elements only if it contains one of the two elements. For example all
integers divisible by a fixed prime p form a prime ideal of the ring
of integers. This trend towards looking at ideals rather than elements
marks an important stage in the development of the theory.

In 1882 an important paper by Dedekind and Weber accomplished
two things; it related geometric ideas with rings of polynomials and
extended the use of modules. It is important to realise that at this
stage rings of polynomials and rings of numbers were being studied,
but it was to be another 40 years before an axiomatic theory of
commutative rings was to be developed bringing these theories together.

Although the concept of a ring is due to Dedekind, one of the first
words used was an “order” or “order-modul”. This term, invented by
Kronecker, is still used today in algebraic number theory. Dedekind
did introduce the term “field” (Korper) for a commutative ring in
which every non-zero element has a multiplicative inverse but the
word “number ring” (Zahlring) or “ring” is due to Hilbert. Hilbert,
motivated by studying invariant theory, studied ideals in polynomial
rings proving his famous “Basis Theorem” in 1893. Special cases of
this theorem had been studied by Gordan from 1868 and on seeing
Hilbert’s proof Gordan is said to have exclaimed “This is not
mathematics, it’s theology”.

The decomposition of an integer into the product of powers of
primes has an analogue in rings where prime integers are replaced
by prime ideals but, rather surprisingly, powers of prime integers are
not replaced by powers of prime ideals but rather by “primary ideals”.
Primary ideals were introduced in 1905 by Lasker in the context of
polynomial rings. (Lasker was World Chess Champion from 1894 to
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1921.) Lasker proved the existence of a decomposition of an ideal into
primary ideals but the uniqueness properties of the decomposition
were not proved until 1915 by Macaulay.

I D Macdonald notes in his article [2] that algebra texts such as
that of Weber [4] in 1895 contained axioms for groups similar to many
present-day texts. However, axioms for rings are not given by Weber
and the axiomatic treatment of commutative rings was not developed
until the 1920’s in the work of Emmy Noether and Krull. Emmy
Noether, one of the world’s greatest women mathematicians, was a
student of Gordan’s. In about 1921 she made the important step,
which we commented on earlier, of bringing the two theories of rings
of polynomials and rings of numbers under a single theory of abstract
commutative rings. Discrimination made it difficult for her to publish
her work and it was not until Van der Waerden’s important work on
Modern Algebra [3] was published in 1930 that Noether’s results
become widely known.

In contrast to commutative ring theory, which as we have seen
grew from number theory, non-commutative ring theory developed
from an idea which, at the time of its discovery, was heralded as a
great advance in applied mathematics. Hamilton attempted to
generalise the complex numbers as a two dimensional algebra over
the reals to a three dimensional algebra. Hamilton, who introduced
the idea of a vector space, felt that this three dimensional analogue
of the complex numbers would revolutionise applied mathematics but
he struggled unsuccessfully with the idea for many years. In 1843
inspiration struck Hamilton - the generalisation was not to three
dimensions but to four dimensions and the commutative property of
multiplication no longer held. The quaternion algebra, as Hamilton
called this four dimensional algebra, was widely used in applied
mathematics (where it was later replaced by the vector product) and
it launched non-commutative ring theory.

Matrices with their laws of addition and multiplication were
introduced by Cayley in 1850 while, in 1870, Pierce noted that the
now familiar ring axioms held for square matrices - another early
example of the axiomatic approach to rings. The greatest early
contributor to the theory of non-commutative rings was the Scottish
mathematician Wedderburn. In 1905 he proved that every finite
division ring (a ring in which every non-zero element has a
multiplicative inverse) is commutative and so is a field. In 1908
Wedderburn had the important idea of splitting the study of a ring
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into two parts, one part he called the radical, the part which was left
being called semi-simple. He used matrix rings to classify the semi-
simple part. The importance of this work can be seen from the fact
that the next 56 years were spent generalising it. We should point
out that Wedderburn did not prove his results for rings but rather
for hypercomplex systems - a term no longer in use which meant a
finite dimensional algebra over a field.

The Wedderburn theory was extended to non-commutative rings
satisfying both ascending and descending finiteness conditions (called
chain conditions) by Artin in 1927. It was not until 1939 that Hopkins
showed that only the descending chain condition was necessary.

Around the 1930’s the theories of commutative and non-
commutative rings came together and the ideas of one began to
influence the other. For example, chain conditions in both commutative
and non-commutative rings are investigated at much the same time.
Modules, originally introduced for commutative rings, were studied
for general rings. Some ideas, however, were slow to filter from one
theory to the other, for example, prime ideals for non-commutative
rings were not studied until 1949 by McCoy.

In the 1940’s attempts were made to prove results of the
Wedderburn-Artin type for rings without chain conditions. The
breakthrough here was made in 1945 by Jacobson who was a student
of Wedderburn’s using ideas of Perlis in 1942. It is interesting to note
that this fundamental work by Jacobson hinges on the idea of the
“Jacobson radical” of a ring which is an analogue of a group theory
idea due to Frattini as early as 1885.

Commutative Algebra

Commutative algebra is the branch of algebra that studies
commutative rings, their ideals, and modules over such rings. Both
algebraic geometry and algebraic number theory build on commutative
algebra. Prominent examples of commutative rings include polynomial
rings, rings of algebraic integers, including the ordinary integers 7,
and p-adic integers.

Commutative algebra is the main technical tool in the local study
of schemes.

The study of rings which are not necessarily commutative is
known as noncommutative algebra; it includes ring theory,
representation theory, and the theory of Banach algebras.
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Overview

Commutative algebra is essentially the study of the rings occurring
in algebraic number theory and algebraic geometry

In algebraic number theory, the rings of algebraic integers are
Dedekind rings, which constitute therefore an important class of
commutative rings. Considerations related to modular arithmetic have
led to the notion of valuation ring. The restriction of algebraic field
extensions to subrings has lead to the notions of integral extensions
and integrally closed domains as well as the notion of ramification
of an extension of valuation rings.

The notion of localization of a ring (in particular the localization
with respect to a prime ideal, the localization consisting in inverting
a single element and the total quotient ring) is one of the main
differences between commutative algebra and the theory of non-
commutative rings. It leads to an important class of commutative
rings, the local rings that have only one maximal ideal. The set of the
prime ideals of a commutative ring is naturally equipped with a
topology, the Zariski topology. All these notions are widely used in
algebraic geometry and are the basic technical tools for the definition

of scheme theory, a generalization of algebraic geometry introduced
by Grothendieck.

Many other notions of commutative algebra are counterparts of
geometrical notions occurring in algebraic geometry. This is the case
of Krull dimension, primary decomposition, regular rings, Cohen—
Macaulay rings, Gorenstein rings and many other notions.
Examples

The fundamental example in commutative algebra is the ring of
integers Z. The existence of primes and the unique factorization
theorem laid the foundations for concepts such as Noetherian rings
and the primary decomposition.

Other important examples are:

* Polynomial rings R[x,...,x,]

* The p-adic integers

* Rings of algebraic integers.
Conneclions with Algebraic Geometry

Commutative algebra (in the form of polynomial rings and their
quotients, used in the definition of algebraic varieties) has always
been a part of algebraic geometry. However, in late 1950s, algebraic



