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Preface

This book is an introductory course on Probability Theory and Stochastic
Processes for first-year graduate students in Engineering or perhaps applied
students in Mathematics. There are several such books in print today in-
cluding Papoulis and Pillai [1], Fine [2], Gubner (3], Leon-Garcia [4], Stark
and Woods [5] as well as the advanced undergraduate books by Bertsekas
and Tsitsiklis [6], and Helstrom [7]. The obvious question is, “Why another
such book?”. Well, the “Holy Grail” of teaching probability is to explain
what it is all about without getting bogged down in measure theory. The at-
tempt here is to do this with an approach based on the binary expansion of
real numbers in the unit interval as a model of tossing a fair coin an infinite
number of times [8][9][10]. Such an approach provides a means to explicitly
construct the stochastic processes (random variables) used in the modeling
of the typical random phenomena encountered in engineering and science.
As a result, the student understands why the mathematical structure and
notation of probability is setup the way it is. By structure is simply meant
that there is a single underlying probability space on which all the random
variables are defined (done via the binary expansion model). However, it
must be emphasized that the presentation here is not a measure-theoretic
approach to probability! Rather, we explain and emphasize that in applying
probability theory, the user specifies the probability distributions Fx, of the
random variables X; (not the abstract functions X;(w) for w € €, where
2 is the abstract sample space) in order to model random phenomena.
The standard (and correct) definition of a random variable as a function
X;: Q — R gives no insight into why they are useful for modeling ran-
dom phenomena. In the author’s opinion, this is especially confusing when
modeling random phenomena with an uncountable number of outcomes
(continuous random variables). In contrast, here a single underlying prob-
ability space is constructed with a uniform probability function P along
with a sequence of independent random variables (functions) X;: @ — R
such that Fy,(z) = P({w € | X;(w) < z}).

This basic structure of probability theory for uncountable sample spaces
is developed in Chapters 4, 5, 6, and 7. The half-open interval (0,1] is
taken as the underlying probability space with the uniform distribution
as the probability function. Each w € Q = (0,1] is written as a binary
expansion, i.e., w = 0.wiwaws..., where w; = 0 or 1 is the i** term in the
binary expansion of w. The random variable X; : & — R is defined by
Xi(w) = w;, where it is shown that these random variables (functions) are
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independent and
P{weQX;=0}) =PH{weQX;=1})=1/2.

This is an explicit construction of a stochastic process modeling the tossing
of a fair coin an infinite number of times. These coin tossing random vari-
ables X; are then used to construct an infinite sequence U; of independent
uniformly distributed random variables all defined on Q = (0, 1]. Finally,
using these uniformly distributed random variables Uj;, it is shown how
to construct an infinite sequence of independent random variables with a,
Gaussian, exponential, or any other desired distribution. The point of go-
ing through this explicit construction is to give the reader a concrete view
of sequences of independent random variables. More importantly, these
constructions are then used to drive home the point that the explicit func-
tional dependence of the random variables X;(w) on the outcome w is of
no importance in modeling random phenomena; rather in applications one
(typically) wants a sequence of random variables that are independent and
of a given distribution to model a particular random phenomena. This
modeling issue is hopefully made clear by the end of Chapter 7.

The Polish mathematician Mark (Marek) Kac pointed out in his book
[10] (see pages 10,11) that the early development of probability was not
embraced by mathematicians because it was not about numbers. Specif-
ically, tossing a coin an infinite number of times was represented as an
infinite sequence of Hs and T's with the important probabilistic notion be-
ing that any toss is independent of any other toss. However, as Professor
Kac explained, most mathematicians remained “aloof”’ because it was not
clear “what the objects were to which the formalism [independence and
probability] was applicable”. Then in 1909 Emile Borel showed that the
binary expansion digits of the numbers in (0,1] were independent in the
probabilistic sense and thus mathematicians had these actual real-valued
functions from the interval (0, 1] to the set {0, 1} to model the tossing of a
fair coin an infinite number of times. As Professor Kac went on to say:

At long last, there were well-defined objects to which probabil-
ity theory for independent events could be applied without fear
of getting involved with coins, events, tosses, and experiments.

These “well-defined objects” were the binary expansion functions which
are now called random variables.! As already mentioned, using these “well-
defined objects”, one is then able to construct an independent sequence of
random variables with any prescribed probability distribution. It is hoped

LOf course, the later development in the 1930s of the use of measure theory by A.
N. Kolmogorov as a general setting for probability theory showed that one could get
involved with “coins, events, tosses, and experiments” rigorously. See Foundations of
the Theory of Probabilty by A. N. Kolmogorov, 1933.
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that this use of the binary expansion as a tool to explain the mathematical
setup of probability theory is as helpful to the reader as it was to the author
and, apparently, the mathematical community of the early part of the 20th
century!

This book divides the presentation of probability theory according to
whether the sample space has a countable number of outcomes or an un-
countable number of outcomes. The first three chapters develop probabil-
ity theory for countable (finite and countably infinite) sample spaces. The
mathematics required for countable sample spaces is elementary with the
physical meaning of outcomes clear and the notion of random variables
straightforward. Chapters 4, 5, 6, and 7 then develop probability theory
for sample spaces with an uncountable number of outcomes. In this case,
typically no physical meaning is attached to the outcomes w. A standard
presentation is to say there is an experiment H with sample space 2 whose
elements are the outcomes w. This is often indicated pictorially as in the
figure below. Here the large ellipse denotes the sample space € with the
points inside this ellipse denoting the outcomes w. A random variable X (w)
is (essentially) a function that maps each outcome to a number on the real
line R. An event Ep is a subset of §2 and the outcomes in Fg are mapped
to some subset B C R of the real line by the random variable X.

However, the author has always found this explanation unsatisfying.
What is this function X (w)? Apparently one doesn’t care about the ex-
plicit functional relationship from w to X (w). Why? What is this so-called
“experiment H”? Again, this is where the binary expansion comes in to
make everything much more concrete. One can take comfort in the words
of the mathematician Joseph L. Doob that there is a “wide gap between
accepting a definition and taking it seriously”. In fact, quoting from an
interview of J. L. Doob given by J. Laurie Snell [11]%:

20r go to the webpage www.dartmouth.edu/ ~chance/Doob/conversation. html
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Kolmogorov’s 1933 monograph on the foundations of (math-
ematical) probability appeared just when I was desperately try-
ing to find out what the subject was all about. He gave mea-
sure theoretic definitions of probability, of random variables and
their expectations, and conditional expectations. He also con-
structed probability measures in infinite dimensional coordinate
spaces. Kolmogorov did not state that the set of coordinate
variables of such a space constitutes a model for a collection
of random variables with given compatible joint distributions,
and [ am ashamed to say that I completely missed the point
of that section of his monograph, only realizing it after I had
constructed some infinite dimensional product measures in the
course of my own research. Kolmogorov defined a random vari-
able as a measurable function on a probability measure space.
But there is a wide gap between accepting a definition and tak-
ing it seriously. It was a shock for probabilists to realize that a
function is glorified into a random variable as soon as its domain
is assigned a probability distribution with respect to which the
function is measurable. In a 1934 class discussion of bivariate
normal distributions Hotelling remarked that zero correlation
of two jointly normally distributed random variables implied
independence, but it was not known whether the random vari-
ables of an uncorrelated pair were necessarily independent. Of
course he understood me at once when I remarked after class
that the interval [0, 27] when endowed with Lebesgue measure
divided by 2 is a probability measure space, and that on this
space the sine and cosine functions are uncorrelated but not
independent random variables. He had not digested the idea
that a trigonometric function is a random variable relative to
any Borel probability measure on its domain. The fact that
nonprobabilists commonly denote functions by f, g, and so on
whereas probabilists tend to call functions random variables and
use the notation z,y and so on at the other end of the alpha-
bet helped to make nonprobabilists suspect that mathematical
probability was hocus pocus rather than mathematics. And the
fact that probabilists called some integrals “expectations” and
used the letters E or M instead of integral signs strengthened
the suspicion.

J. L. Doob is pointing out the not so obvious notion of an infinite sequence
of random variables on a single probability space (infinite dimensional prod-
uct measures), the difference between the mathematical definition of a ran-
dom variable and its actual use (i.e., its “digestion”), and that expectation
is simply integration over the underlying probability space. It is precisely
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this type of confusion of the structure of probability theory when one is first
learning the subject that has motivated the approach in this textbook. As
previously stated, Chapters 4, 5, 6, and 7 construct the probability space
(©2 = (0,1], B(g,1)» P) where the sample space ( is simply the half-open in-
terval (0, 1], B(q 1) is the Borel sigma field of subsets of (0, 1] (which is simply
explained to be the set of subsets of (0, 1] that one can integrate over), and
P is the uniform distribution. An infinite sequence of independent Bernoulli
random variables with parameter p = 1/2 is constructed from the (nonter-
minating) binary expansion of points in (0,1]. Using these random vari-
ables, it is then shown how an infinite sequence of independent uniformly
distributed random variables (functions) are constructed on this same prob-
ability space. From this it is then shown straightforwardly how to obtain
an independent identically distributed sequence of random variables with
any given probability distribution. After going through this development,
it is hoped that the reader realizes that random variables are just functions
defined on the probability space; but in modeling random phenomena, it
is the distributions of the random variables (Gaussian, exponential, etc.)
and their specified properties (e.g., independence, uncorrelatedness, etc.)
that are important in applications, not the functional dependence of the
random variable X (w) on w. Also, it hopefully clarifies the rather abstract
notation? P({w € Q|z; < X(w) < z3}) where {w € Q|z; < X(w) < 22} is
a set in the underlying probability space, P is the probability function on
the underlying probability space and the probability of the set is actually
computed using the induced probability distribution of the random vari-
able X as P({w € Q|z1 < X(w) < z2}) = f;z fx(z)dz. Further, as shown
in Chapter 6, this development allows us to show that the expectation of
a random variable X can be computed in the usual way using the distrib-
ution of X, i.e., as E[X] = [*_zfx(z)dz or (conceptually) as integrating

over the underlying probability space, i.e., E[X] = [, XdP = fol X (w)dw.

This explicit construction of the random variables is also used to clarify
the statement? of the Strong Law of Large Numbers (SLLN). Specifically,
the SLLN states that

lim (almost everywhere),
n—00

z:L:l Xi(w) — E[Xz]

where the X; are independent identically distributed random variables.
Students are used to the notion of (pointwise) convergence using explicit
functions from their first calculus course. For example, with S,(w) =
(3% Xi(w))/n, suppose that S, can written explicitly as (say) S,(w) =

3 And the equivalent shorthand notations P({w|z1 < X(w) < z2}), P({z1 < X <
z2}) and P(z1 < X < z2).

4Even a probability space with a finite number of outcomes requires the construction
of an infinite sequence of independent identically distributed random variables to state
the SLLN!
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p(1 — e=*@=1/n)) for 0 < w < 1. Then, for all w € (0, 1], we have

—nz(w—l/n))

lim S, (w) = nh_’rrolo u(l—e = .

n—00

However, as shown by the construction of an independent sequence of (for
example) Gaussian random variables, the reader is made well aware that
the explicit dependence of S, (w) on the outcome “w” is not known making
it impossible to carry out such a limit. Hence it is explained that the SLLN
must be proven using only the knowledge that the X; are independent, that
the distribution functions of all the X; are the same, and that the expected
value E[X;] is finite. The emphasis here is on what the strong law says and
what are the issues in proving it. Similar comments hold in regards to the
central limit theorem (CLT). It is this explicitly constructed underlying
probability space ((0, 1], Bo,1» P) that is exploited to give a more concrete
explanation of these abstract things called random variables.

Chapters 8, 9, and 10 present the methods on computing the distribution
of functions of random variables as well as the use of transform techniques
(characteristic functions and moment generating functions). This is stan-
dard material and provides important mathematical tools for dealing with
random variables. What is different from the standard pedagogy is that
the Poisson process is defined and its probability distribution is derived in
Chapter 9. This is simply because the idea of a stochastic process consisting
of an infinite sequence of i.i.d. exponential random variables has already
been developed in Chapter 7 so that the Poisson process can be defined.
Further, using the techniques developed in the early part of Chapter 9, we
are also able to derive its probability distribution. Also, the central limit
theorem is discussed in Chapter 9.

Chapter 11 develops the notion of conditional probability for jointly con-
tinuous random variables. Conditional expectation is developed and shown
to be the minimum mean square error estimator. The special case of con-
ditional expectation applied to jointly Gaussian random variables is pre-
sented in detail. The section on the (simplistic) example of navigation using
a GPS measurement is presented primarily to give some idea on how to take
a problem and put it into a standard mathematical formulation for analy-
sis. The orthogonality of the conditional expectation is also proven and
discussed. Linear mean square estimation is then developed including its
relationship to the orthogonality principle.

Chapter 12 generalizes the ideas developed in Chapter 10 for two random
variables to m random variables. In particular, the general definition and
properties of n jointly Gaussian random variables are given. The chapter
ends with a section on the general case of linear mean square estimation.

Chapter 13 continues on from the brief look at the Bernoulli and geo-
metric processes in Chapter 7 and the brief look at the Poisson process in
Chapter 9 to give a more in depth study of these processes. The approach
here is to do the modeling and analysis of arrivals in discrete time (which is
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easier conceptually and mathematically) and then take the limit to continu-
ous time. In particular, the “waiting time paradox” in discrete time is com-
pletely worked out in a very simple manner using the Bernoulli model. The
“fresh start” property of both the geometric and Bernoulli processes are
derived in a simple manner as well. The second section in this chapter then
shows how a binomial process S, where P({w|S, = k}) = (})p*(1 —p)"~*
with n interpreted as time can be viewed as a discrete time version of the
Poisson process. The advantage of this approach is that it very easy to
show that the binomial process has independent increments, that its in-
crements are also binomial random variables, and further, letting n — oo
with np = A > 0 (] fixed), that S,, converges in distribution to the Pois-
son distribution. This development is used to motivate the corresponding
properties for the Poisson process which are not proven. After a discussion
on the properties of the Poisson process (independent increments, the wait-
ing time paradox, etc.), some interesting examples using these properties
are presented. A section on the “Order Statistics” is presented as enough
background has been developed to study this application. Finally, the last
section covers shot noise as a classical application of the Poisson process. In
particular, Campbell’s theorem is derived by using a discrete-time Bernoulli
process to approximate the Poisson process.

Chapter 14 uses the random walk process to motivate the Brownian mo-
tion (Wiener) process and also to develop the white noise process. In par-
ticular, the random walk is developed as a discrete-time Bernoulli process
with parameters n and p = 1/2, where n is interpreted as discrete time
and p = 1/2 is the probability of heads/tails. The central limit theorem
is then invoked to show the distribution of the random walk goes to a
Wiener (Gaussian) process. The independent increment property is also
motivated and discussed. White noise is first motivated as a finite differ-
ence increment of the Wiener process, which is then used to motivate the
idea that the autocorrelation of white noise is a delta function. Thermal
white noise (voltage noise due to random motion of electrons in a metal) is
presented next using the explicit autocorrelation function determined by J.
B. Johnson and H. Nyquist in their classic papers published in 1928. Based
on their representation of this noise as a zero-mean Gaussian process with
their experimentally determined autocorrelation function, it is then shown
why in typical engineering applications its autocorrelation function can be
represented by a Dirac delta function. Care is taken to show when this rep-
resentation is valid and when it is not. The explanation of white noise in
the frequency domain is put off until the notion of power spectral density
is developed in Chapter 15.

Chapter 15 develops the concept of a stationary random process which is
then used to develop the idea of the power spectral density of a process. The
first section of the chapter goes through the standard definitions for sta-
tionary random processes along with some (hopefully) clarifying examples.
An overview of discrete-time linear time-invariant (LTI) systems is then
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presented including convolution, transfer functions, and state space rep-
resentations. Also covered is stability, causality, and discrete-time Fourier
transforms along with the deterministic versions of autocorrelation, energy
and power spectral densities. Then the notion of power spectral density for
discrete-time stationary random processes is discussed with quite a bit of
effort given to developing its interpretation. After working in discrete time,
an overview of continuous-time LTI systems is presented followed by the
development of the notion of power spectral density for continuous-time
random processes. There is then a section covering thermal white noise.
The effort here concentrates on presenting an explanation that the stan-
dard approach of modeling the autocovariance of this noise as a Dirac delta
function follows from the Physics of thermal noise and the way it is used
in applications.

Chapter 16 presents the basic limit theorems of probability and the
various notions of convergence. As an application of these ideas, a more
in-depth development of Brownian motion is presented at the end of the
chapter.

Chapter 17 develops the basic ideas of Statistics specifically including
estimation of the mean and variance along with the development of confi-
dence intervals. This chapter is based on the unpublished lecture notes of
R. B. Ash [12].

Chapter 18 presents an introduction to Kalman filtering using Anderson
and Moore’s book [13] Optimal Filtering as the primary reference.

Finally, it must be said that this text has borrowed ideas and examples
from many books and I have tried to be careful to cite the references from
which I obtained such material.’

Logical Dependence of the Chapters

The logical dependence of the chapters is given in the figure below.

Chapter 1
through
Chapter 11
1 Y Y 12 v
Chapter 12 Chapter 13 Chapter 14 Chapter 16 Chapter 17
'
Chapter 18 Chapter 15

5That old paraphrase of Picasso is perhaps more appropriate: Good ideas are inspired,
great ideas are stolen!



xxi

Use of the Book for a One Semester Course

The prerequisites for this book are an elementary undergraduate proba-
bility course, a signals and systems course (convolution and Fourier trans-
forms), and some elementary matrix theory. This background is in a typical
undergraduate electrical engineering program.

In using this book in a one-semester graduate-level course, the first 11
chapters can be covered as follows:

Chapter 1, Sections 1.1 through 1.6
Chapter 2, Sections 2.1 through 2.4
Chapter 3, Sections 3.1 through 3.4
Chapter 4, Sections 4.1 through 4.4
Chapter 5, Sections 5.1 through 5.4
Chapter 6, Sections 6.1 and 6.2
Chapter 7, Sections 7.1 through 7.3
Chapter 8, Sections 8.1 through 8.3
Chapter 9, Sections 9.1 through 9.5
Chapter 10, Sections 10.1 through 10.3
Chapter 11, Sections 11.1 through 11.6

The first few versions of the manuscript of this book were set up to skip
Chapters 2 and 3 (they didn’t exist). If this is done, there is time to cover

Chapter 13, Sections 13.1, 13.2, 13.3, and 13.5
or
Chapter 14, Sections 14.1, 14.2, 14.3, and 14.5
Chapter 15, Sections 15.1, 15.3, 15.4, and 15.6 through 15.8.

Computer Programs

There is a set of computer programs written in Matlab from MATHWORKS,
Inc. that accompany this book (for reference in the book, look under Sim-
ulation in the Index). They can be downloaded from the book’s webpage
which is found by going to the website www.wiley.com and searching for
this book under its title and author. For the reader who does not have ac-
cess to Matlab, the open source software Octave (www.octave.org) should
be able to run these programs as well.
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