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Preface

Thermodynamics, one of the central subjects of science, is based on laws of universal ap-
plicability. The justification for presenting the subject from a chemical-engineering viewpoint
is our conviction that it is most effectively taught in the context of the discipline of student
commitment.

Although introductory in nature, the material of this text should not be thought simple.
Indeed, there is no way to make it simple, and a student new to the subject will find that a
demanding task of discovery lies ahead. New concepts, words, and symbols appear at a bewil-
dering rate, and here memory plays a part. A far greater challenge is the necessity to develop
a capacity to reason and to apply thermodynamic principles in the solution of practical prob-
lems. While maintaining the rigor characteristic of sound thermodynamic analysis, we have
made every effort to avoid unnecessary mathematical complexity. Moreover, we encourage
understanding by writing simple active-voice, present-tense sentences. We can hardly supply
the required motivation, but our objective, as it has been for all previous editions, is a treatment
that may be understood by any student willing to exercise due diligence.

The first two chapters of the book present basic definitions and a development of the
first law. Chapters 3 and 4 treat the pressure/volume/temperature behavior of fluids and certain
heat effects, allowing early application of the first law to realistic problems. The second law
and some of its applications are considered in Chap. 5. A treatment of the thermodynamic
properties of pure fluids in Chap. 6 allows general application of the first and second laws, and
provides for an expanded treatment of flow processes in Chap. 7. Chapters 8 and 9 deal with
power production and refrigeration processes. The remainder of the book, concerned with fluid
mixtures, treats topics in the unique domain of chemical-engineering thermodynamics. Chap-
ters 11 and 12 provide a comprehensive exposition of the theory and application of solution
thermodynamics. Chemical-reaction equilibrium is covered at length in Chap. 13. Chapter 14
deals with topics in phase equilibria, including an extended treatment of vapor/liquid equilib-
rium, and adsorption and osmotic equilibria. Chapter 15 treats the thermodynamic analysis of
real processes, affording a review of much of the practical subject matter of thermodynamics.

XVil
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The material of these 15 chapters is more than adequate for an academic-year under-
graduate course, and discretion, conditioned by the content of other courses, is required in
the choice of what is covered. The first 13 chapters include material thought necessary as
part of any chemical engineer’s education. Where only a single-semester course in chemical-
engineering thermodynamics is provided, these 13 chapters may represent sufficient content.

The laws and principles of classical thermodynamics do not depend on any particular
model of the structure of matter; they are free of any molecular considerations. However,
the behavior exhibited by matter— gases, liquids, and solids— does depend on its particulate
nature, and in Chapter 16 we present an introduction to molecular thermodynamics, to which
reference is occasionally made in earlier chapters.

The book is comprehensive enough to make it a useful reference both in graduate courses
and for professional practice. However, length considerations make necessary a prudent selec-
tivity. Thus, we do not include certain topics worthy of attention, but of a specialized nature.
These include applications to polymers, electrolytes, and biomaterials.

We are indebted to many individuals— students, professors, reviewers— who have con-
tributed in various ways to the quality of this seventh edition, directly and indirectly, through
question and comment, praise and criticism, over the 55 years and six editions of its evolution.
To all we extend our thanks.

J. M. Smith
H. C. Van Ness
M. M. Abbott
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Chapter 1

Introduction

1.1 THE SCOPE OF THERMODYNAMICS

The science of thermodynamics was born in the nineteenth century of the need to describe the
operation of steam engines and to set forth the limits of what they can accomplish. Thus the
name itself denotes power developed from heat, with obvious application to heat engines, of
which the steam engine was the initial example. However, the principles observed to be valid
for engines are readily generalized, and are known as the first and second laws of thermody-
namics. These laws have no proof in the mathematical sense; their validity lies in the absence
of contrary experience. Thus thermodynamics shares with mechanics and electromagnetism a
basis in primitive laws.

These laws lead through mathematical deduction to a network of equations which find
application in all branches of science and engineering. The chemical engineer copes with a
particularly wide variety of problems. Among them are calculation of heat and work require-
ments for physical and chemical processes, and the determination of equilibrium conditions
for chemical reactions and for the transfer of chemical species between phases.

Thermodynamic considerations do not establish the rates of chemical or physical pro-
cesses. Rates depend on driving force and resistance. Although driving forces are thermody-
namic variables, resistances are not. Neither can thermodynamics, a macroscopic-property for-
mulation, reveal the microscopic (molecular) mechanisms of physical or chemical processes.
On the other hand, knowledge of the microscopic behavior of matter can be useful in the calcu-
lation of thermodynamic properties.! Property values are essential to the practical application
of thermodynamics. The chemical engineer deals with many chemical species, and experi-
mental data are often lacking. This has led to development of “generalized correlations™ that
provide property estimates in the absence of data.

The application of thermodynamics to any real problem starts with the identification of
a particular body of matter as the focus of attention. This body of matter is called the system,
and its thermodynamic state is defined by a few measurable macroscopic properties. These
depend on the fundamental dimensions of science, of which length, time, mass, temperature,
and amount of substance are of interest here.

"'An elementary treatment is presented in Chap. 16.



2 CHAPTER 1. Introduction

1.2 DIMENSIONS AND UNITS

The fundamental dimensions are primitives, recognized through our sensory perceptions and
not definable in terms of anything simpler. Their use, however, requires the definition of ar-
bitrary scales of measure, divided into specific units of size. Primary units have been set by
international agreement, and are codified as the International System of Units (abbreviated SI,
for Systéme International).

The second, symbol s, the SI unit of time, is the duration of 9,192,631,770 cycles of
radiation associated with a specified transition of the cesium atom. The meter, symbol m,
is the fundamental unit of length, defined as the distance light travels in a vacuum during
1/299,792,458 of a second. The kilogram, symbol kg, is the mass of a platinum/iridium cylin-
der kept at the International Bureau of Weights and Measures at Sevres, France. The unit of
temperature is the kelvin, symbol K, equal to 1/273.16 of the thermodynamic temperature of
the triple point of water. A detailed discussion of temperature, the characteristic dimension
of thermodynamics, is given in Sec. 1.5. The mole, symbol mol, is defined as the amount of
substance represented by as many elementary entities (e.g., molecules) as there are atoms in
0.012 kg of carbon-12. This is equivalent to the “gram mole”” commonly used by chemists.

Multiples and decimal fractions of SI units are designated by prefixes. Those in common
use are listed in Table 1.1. Thus, the centimeter is given as 1 cm = 1072 m, and the kilogram
as 1 kg=103 g.

Table 1.1: Prefixes for SI Units

Multiple  Prefix Symbol | Multiple Prefix Symbol
10°  femto f 10> hecto h
1072 pico p 103 kilo k
107° nano n 108 mega M
106 micro "w 10° giga G
10=%  milli m 1012 tera T
1072 centi c 1019 peta P

Other systems of units, such as the English engineering system, use units that are related
to SI units by fixed conversion factors. Thus, the foot (ft) is defined as 0.3048 m, the pound
mass (Iby) as 0.45359237 kg, and the pound mole (Ib mol) as 453.59237 mol.

1.3 MEASURES OF AMOUNT OR SIZE

Three measures of amount or size are in common use:
e Mass, m e Number of moles, n e Total volume, V'

These measures for a specific system are in direct proportion to one another. Mass, a primitive
without definition, may be divided by the molar mass M, commonly called the molecular



1.4. Force

weight, to yield number of moles:
m
n=— or m= Mn
M

Total volume, representing the size of a system, is a defined quantity given as the product
of three lengths. It may be divided by the mass or number of moles of the system to yield
specific or molar volume:

== or Vi=mV

e Specific volume: 1%

e Molar volume: V=— or Vi=nVv
Specific or molar density is defined as the reciprocal of specific or molar volume: p = V1.
These quantities (V and p) are independent of the size of a system, and are examples
of intensive thermodynamic variables. They are functions of the temperature, pressure, and
composition of a system, additional quantities that are independent of system size.

1.4 FORCE

The SI unit of force is the newton, symbol N, derived from Newton’s second law, which ex-
presses force F as the product of mass m and acceleration a; thus F = ma. The newton is
defined as the force which when applied to a mass of 1 kg produces an acceleration of 1 m s~2;
thus the newton is a derived unit representing 1 kg m s~2.

In the English engineering system of units, force is treated as an additional independent
dimension along with length, time, and mass. The pound force (lbf) is defined as that force
which accelerates 1 pound mass 32.1740 feet per second per second. Newton’s law must here

include a dimensional proportionality constant for consistency with this definition:

F = —ma
|
Whence,? 1(Ibf) = — x 1(Iby,) x 32.1740(ft)(s)~2
and ge = 32.1740(Iby)(ft)(1bg) ' (s) 2

The pound force is equivalent to 4.4482216 N.

Because force and mass are different concepts, a pound force and a pound mass are
different quantities, and their units do not cancel one another. When an equation contains both
units, (Ibf) and (Iby,), the dimensional constant g. must also appear in the equation to make it
dimensionally correct.
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“Where non-SI units (e.g., English units) are employed, parentheses enclose the abbreviations of all units.



