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Introduction

THE USE of the geometric principles of symmetry for the description and un-
derstanding of decorated forms represents the union of two normally separate
disciplines—mathematics and design. The only limitation to the types of de-
signs which can be described by these principles is that they must consist of
regularly repeated patterns. That is, they must be designs with parts moved
by rigid geometric motions.

In this book we demonstrate how to use the geometric principles of crystal-
lography to develop a descriptive classification of patterned design. Just as
specific chemical assays permit objective analysis and comparison of objects,
so too the description of designs by their geometric symmetries makes possi-
ble systematic study of their function and meaning within cultural contexts.

This particular type of analysis classifies the underlying structure of deco-
rated forms; that is, the way the parts (elements, motifs, design units) are ar-
ranged in the whole design by the geometrical symmetries which repeat them.
The classification emphasizes the way the design elements are repeated, not
the nature of the elements themselves. The symmetry classes which this method
yields, also called motion classes, can be used to describe any design whose parts
are repeated in a regular fashion. On most decorated forms such repeated de-
sign, properly called pattern, is either planar or can be flattened (e.g., un-
rolled), so that these repeated designs can be described either as bands or strips
(one-dimensional infinite) or as overall patterns (two-dimensional infinite) in a
plane.

This is essentially a handbook for the nonmathematician. There are a num-
ber of geometry textbooks which derive the pattern classes, but they usually
offer more detail than is needed by a user in the humanities. Conversely, there
have been a number of articles and monographs written by and for social sci-
entists, but these are usually specific to one body of data. We have attempted
to offer a more comprehensive survey of patterns occurring on decorated ob-
jects from cultures all over the world and to systematically show how to clas-
sify the finite, one-dimensional, and two-dimensional one- and two-color de-
signs with the use of flow charts and other detailed descriptions of the symmetry
motions and colors present.

Chapter 1 presents a short historical review of the discovery and enumera-
tion of the plane pattern classes, the importance of symmetry for form identi-
fication and classification, and theoretical issues in the application of this type
of analysis to designs found on cultural material. Chapters 2 through 6 show
how to classify patterned design with the aid of flow charts, schematic draw-
ings of each class, and photographs and drawings of actual objects decorated
with such patterns. These chapters treat the one- and two-color, one- and two-
dimensional patterns, and the common finite designs, because these are the most
frequently encountered.

The mathematical background needed to understand and perform symme-
try analysis is summarized in Chapters 2 and 3. The reader must be conver-
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x Introduction

sant with these principles before reading Chapters 4, 5, and 6, which describe
the one-dimensional, two-dimensional, and finite designs respectively. Each
of the chapters on one- and two-dimensional designs begins with a section which
describes the flow charts and leads the reader through the use of the charts with
an example from each motion class. The last section of each of these two chap-
ters presents a more detailed explanation of each motion class and shows ac-
tual examples of this class. Chapter 7 discusses special problems which may
be encountered in symmetry classification. Three Appendixes present in de-
tail the mathematical proofs for the existence of the four motions and the seven
one-dimensional designs, and correlate the several other nomenclatures with
the standard crystallographic nomenclature which we use in this book.

We suggest that the user first grasp the principles of geometry outlined in
Chapters 2 and 3 and become familiar with the flow charts, before embarking
on a study of a specific body of data. Then, in order to classify any particular
pattern, use the flow charts in Sections 4.2 and 5.1 and the schematic drawings
in 4.3 and 5.2 to key out the pattern. As a final check, turn to the examples shown
in 4.3 and 5.2 for comparison with patterns already identified.

There are computer-generated schematic drawings of every one- and two-
color, one- and two-dimensional design. Indicated in each drawing are the mirror
(solid) and glide (dashed) lines and centers of rotation: @ , © for twofold rota-
tion, with and without color reversal; 7 for threefold rotation; B, O for fourfold
rotation, with and without color reversal; and &%, for sixfold rotation, with
and without color reversal. In these drawings, right triangles or trapezoids
represent the asymmetrical fundamental building blocks of repeated patterns.

A number of patterns have been illustrated for classes where the symmetry
is particularly difficult to see, where it frequently occurs on a number of dif-
ferent kinds of media, or where there are problems and deviations from the
symmetry which must be considered. Further discussion of problem situa-
tions which repeatedly occur is contained in Chapter 7.



Contents

ACKNOWLEDGMENTS il

INTRODUCTION ix

1 History and Theory 1.1 Introduction 3
of Plane Pattern Analysis 1.2

Crystallographic and Mathematical History 3
page 3

1.3 Applications of Geometry to Design: Historical Precedents 6
1.4 Symmetry Analysis in Anthropological Perspective 14
1.4.1 Symmetry: A Property of Regular Patterns 14
1.4.2 Symmetry as a Factor in Perception 15
1.4.3 Symmetry as a Feature Underlying Style 24
1.4.4 Systematic Classifications: The First Step in Theory
Building 34
1.4.5 Concepts and Theories: The Next Steps to Understanding
Culture 36
1.5 Conclusion 40

2 Mathematical Principles 2.1 Introduction 43
and Terminology 2.2

Symmetries of the Plane: The Four Motions 44
page 43

2.2.1 Reflection 46
2.2.2 Translation 48
2.2.3 Rotation 48
2.2.4 Glide Reflection 50
2.3 Designs, Repeated Patterns, and Dimension 52
2.4 Recapitulation 55
2.5 Notation for One-Color Designs and Patterns 57
2.5.1 Notation for Finite Designs 57
2.5.2 Notation for One-Color, One-Dimensional Patterns 57

2.5.3 Notation for One-Color, Two-Dimensional Patterns 58

[



vi  Contents

3 Color Symmetry 3.1 Introduction 63
page 63 3.2 General Principles for Two-Color Patterns 63
3.3 Examples of Two-Color Patterns 66
3.4 Notation for Two-Color Patterns 68
3.4.1 Notation for Two-Color Finite Designs 68
3.4.2 Notation for Two-Color, One-Dimensional Patterns 69
3.4.3 Notation for Two-Color, Two—Dirﬁensional Patterns 70

3.4.4 Type/Subtype Notation 72

3.5 Coloring Consistent with Motion 76

4 One-Dimensional 4.1 Introduction to the Flow Charts 81

Patterns 4.2 Flow Charts for the One-Dimensional Patterns 82

page 81 4.3 Examples of One-Color and Two-Color, One-Dimensional
Patterns 94

5 Two-Dimensional 5.1 Flow Charts for the Two-Dimensional Patterns 127

Patterns 5.2 Examples of One-Color and Two-Color, Two-Dimensional

page 127

Patterns 164

5.2.1 Patterns with No Rotations 164
5.2.2 Patterns with 180° Rotations 184
5.2.3 Patterns with 90° Rotations 216
5.2.4 Patterns with 120° Rotations 236
5.2.5 Patterns with 60° Rotations 240

6 Finite Designs
page 247



vii  Contents

7 Problems in Classification
page 255

Conclusion

page 267

Appendixes
page 271

7.1 Pattern Dimension 255
7.2 Compound Patterns 258

7.3 Pattern Irregularities 262

1 The Four Rigid Motions of the Plane 271
2 The Seven Classes of One-Dimensional Design 278
3 Comparative Notation for the Two-Color, Two-Dimensional

Patterns 280

BIBLIOGRAPHY 283

INDEXES 295

Loincloth, Chancay style (Fig. 5.1, detail)



Symmetries of Culture



¢

G AT Dy,

-

Plate, Deruta, Italy, A.D. 1520-25 (Fine Arts
Museum of San Francisco, no. 54.45.3)



1.1 Introduction

1.2 Crystallographic and
Mathematical History

]

[

1.1a Swastika with rotation symmetry

1.1b Cross with rotation and reflection
symmetry

History and Theory
of Plane Pattern Analysis

IN THIS CHAPTER we first present a short mathematical history (1.2) of the plane
pattern crystallographic motion classes and their initial applications to non-
mathematical fields (1.3) as a preliminary to our discussion (1.4) of the appro-
priateness of this methodology, in terms of the perceptual process of pattern
recognition and the theoretical needs of style analysis, for the study of designs
in material culture.

In his brief prehistory of group theory, A. Speiser (1927) suggested that the or-
igin of higher mathematics (at that time thought to be in Greece about 500 B.C.)
should be pushed back a thousand years to the Egyptian use of one-dimen-
sional and two-dimensional patterns (see Jones 1856 for illustration of such de-
signs). In his view, the creation of certain of these two-dimensional patterns,
with many complicated symmetries, was a mathematical discovery of the first
magnitude.

In contrast to these Egyptians, the later Greeks, who otherwise studied ge-
ometry in a most profound way, seem to have had less interest in such infinite
patterns. However, they developed the theory of finite designs—in the form
of regular polygons, especially the equilateral triangle, square, regular penta-
gon, and regular hexagon—to a high level. This theory included, in Euclid, a
detailed analysis of the five regular polyhedra and, later, the thirteen Archi-
medean polyhedra. Both of these classes of polyhedra can be interpreted as
patterns on the surface of a sphere. However, the Greeks apparently did not
emphasize the analogous (infinite) patterns in the plane: the three regular tes-
sellations, and the eight semiregular tessellations.

Following these Greek constructions there is little record of purely mathe-
matical studies for hundreds of years. But the work of Byzantine artisans of
Ravenna and Constantinople and their successors in Venice, and the Islamic
pattern makers throughout the Mediterranean and east to India, carried on what
we must think of as mathematical work. Although they did not call them-
selves mathematicians, in retrospect (cf. Miiller 1944) we see their methods and
results as having important geometric content.

During the Renaissance, Italian artists and architects made much use of fi-
nite designs. It is thought that Leonardo da Vinci consciously studied the sym-
metries of finite designs and determined all of them so as to be able to attach
chapels and niches without destroying the symmetry of the whole. His con-
clusion, now called Leonardo’s Theorem (Martin 1982:66), was that the only
possible (one-color) finite designs are those which have rotational symmetry
alone, like a swastika (Figure 1.1a), and those which have both rotational and
reflection symmetry, like a Greek cross (Figure 1.1b) or a square.

We will use the symbol ¢4 to denote designs with fourfold rotational sym-
metry but no reflection symmetry, like the swastika. More generally, cn de-
notes any design having only n-fold rotational symmetry, such as a swastika
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4 History and Theory

with n arms. For the corresponding designs with reflection symmetry, we use
the symbol dn. Thus a Greek cross and a square have type d4 symmetry and a
regular hexagon has type d6 symmetry.

Other regular polygons, in the form of fountains, are ubiquitous in Italy. A
typical example, the Maggiore fountain in Perugia, has two tiers, the upper one
having 12-fold (i.e., d12) rotational symmetry and the lower one 25-fold rota-
tional symmetry. The rose window of Santa Chiara in Assisi has 15-fold and
30-fold symmetry (Munari 1966:63). The pulpit of St. Stephen’s in Vienna al-
ternates threefold (c3) and fourfold (c4) symmetries (Weyl 1952:67). An un-
usual assemblage of examples of c3, ¢4, c5, c6, and c7 symmetries, carved in wood
to imitate Gothic windows, is found in the St. Johannes church in Liineburg.

Diirer’s book on geometry (1525) carried this and other information about
regular polygons to Germany for the use of artists. A hundred years later,
Kepler made careful studies of regular polyhedra, and in 1611 wrote a mono-
graph on the snowflake in which he considered the packing of circles in a plane
and spheres in space. Kepler's work can be thought of as the forerunner of
crystallography, the study of which in the nineteenth century led to almost all
the mathematical information we have on repeated patterns until very recent
times.

In the early nineteenth century Hessel found the thirty-two main classes of
crystals (i.e., three-dimensional repeated patterns) which are still used today.
The names of Bravais, Jordan, Sohncke, Barlow, and Schoenflies figure prom-
inently in the massive effort which culminated in the complete list of all 230 three-
dimensional repeated patterns published by Fedorov in 1891. Fortunately, these
230 patterns and the 4,783 four-dimensional patterns recently enumerated by
Brown, Biilow, Neubiiser, Wondratschek, and Zassenhaus (1978) do not di-
rectly concern the student of plane patterns.

One-Color Patterns

The enumeration of the seventeen two-dimensional (one-color) patterns was
also published by Fedorov in 1891. Because this paper appeared only in Rus-
sian and was of little interest for crystallography, it was not until the 1920s that
the classification of one- and two-dimensional patterns became generally known,
through the papers of Niggli (1924, 1926) and Pélya (1924).

The second edition (1927) of Speiser’s group theory text first called the at-
tention of mathematicians to these results. Speiser adopted the notation used
by Niggli, but unfortunately interchanged two of the Niggli symbols. The
mathematical literature of the next fifty years was infected by the conse-
quences of this error. It was finally corrected by Schattschneider (1978). For-
tunately, the crystallographers continued on their own path, so this error does
not appear in their work.
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1.2 Crystallographic History

It is to Speiser’s student, Edith Miiller, that we owe credit for perhaps the
first systematic use of these tools in the analysis of material culture. Her 1944
thesis is a detailed study of the patterned art of the Alhambra. Although Miiller
is often credited with having found all seventeen one-color plane patterns there,
she refers explicitly to only eleven; two others have been documented else-
where. (In the notation explained in Chapter 2, the eleven recorded by Miiller
are pl, pmg, cm, pmm, cmm, p4, p4m, pdg, p3, p6, and pém. Grinbaum,
Griinbaum, and Shephard [1986] record p31m and pm and Jones [1856:P1. 41,
5] records pg [ambiguous].) Not until 1987 did the combined efforts of Spanish
mathematicians and topologists provide documentation of the presence of all
seventeen one-color plane patterns in the Alhambra.

Discussions of the one-color band and plane patterns began to appear more
frequently in mathematical texts following Speiser, particularly in Coxeter (1961),
Fejes Téth (1964), Burckhardt (1966), Guggenheimer (1967), Cadwell (1966), and
O’Daffer and Clemens (1976). The recent books of Lockwood and Macmillan
(1978) and Martin (1982) deal extensively with these topics. Of these refer-
ences, the last four are perhaps the most accessible to the non-mathematician.
The Schattschneider (1978) paper is also recommended.

Two-Color Patterns

The history of the two-color and more highly colored patterns is well de-
scribed in the treatise of Griinbaum and Shephard (1987), which can be taken
as the definitive text for the mathematical theory of patterns in general. The
following briefly summarizes the extensive “Notes and References” at the end
of their Chapter 8. (They refer to our one-dimensional patterns as “strips,” and
to our two-dimensional patterns as “periodic patterns.”)

The first complete, explicit, and deliberate enumeration of the two-color one-
and two-dimensional patterns is found in the papers of the textile physicist
H. J. Woods (1935, 1936). The mosaic representations of all forty-six two-color
patterns in our Chapter 3 are reproduced from Woods 1936. Other mosaics were
used in 1957 by Belov and Belova (excerpted in Shubnikov and Belov 1964), who
were presumably unaware of Woods’s earlier work (Crowe 1986).

Until very recently the most active study of two-color patterns was con-
ducted by the Soviet school of crystallography, following the lead of Shubni-
kov (e.g., Shubnikov and Koptsik 1974; Shubnikov and Belov 1964). For rea-
sons related to crystallographic situations (of no importance for the study of
patterns as such), they introduced the concept of “gray” patterns to accom-
pany the one-color and two-color (black-white) patterns, and these gray pat-
terns were often pictured along with the others. Since the gray patterns are ex-
actly like the one-color patterns, modern treatments often omit them. However,
their inclusion means that in many earlier papers the totals 24 (= 7 one-color



6 History and Theory

1.3 Applications of
Geometry to Design:
Historical Precedents

+ 17 two-color) for one-dimensional patterns and 63 (= 17 one-color + 46 two-
color) for two-dimensional patterns, which are customary in the most recent
literature (including the present handbook), appear as 31 (= 7 one-color + 7 gray
+ 17 two-color) and 80 (= 17 one-color + 17 gray + 46 two-color).

For the reader who wants to know more about the mathematics of two-color
patterns than is in the present handbook, we recommend Woods (1936), Belov
and Tarkhova (1956, reprinted in Shubnikov and Belov 1964), Loeb (1971),
Lockwood and Macmillan (1978), or Griinbaum and Shephard (1987). A par-
ticularly elementary discussion is found in Schattschneider (1986).

The notation we have adopted for the two-color two-dimensional patterns
is the “rational symbol” of Belov and Tarkhova. (Some of their misprints are
corrected in our Section 3.4.) For the two-color one-dimensional patterns we
use the convenient notation of Belov (in Shubnikov and Belov 1964:225). This
latter notation is explained in our Section 3.4.

Multicolored Patterns

For patterns with more than two colors, it is only recently that there has been
agreement concerning the most reasonable definitions, and there is still no
generally accepted nomenclature. The following studies are the most recent
statements which may be used to classify multicolored patterns. For detailed
bibliographic and historical notes see Schwarzenberger (1984) and Chapter 8
of Griinbaum and Shephard (1987).

Jarratt and Schwarzenberger (1981) determined the number of colorings of
one-dimensional patterns with n colors, for all values of n. Wieting (1982)
enumerated all possible colorings of two-dimensional patterns by # colors, for
values of n up to sixty. He gives detailed drawings for the ninety-six ways of
coloring two-dimensional patterns with four colors. Finally, Grinbaum and
Shephard (1987) illustrate all twenty-three ways of coloring two-dimensional
patterns with three colors.

Interest in the application of the principles of geometric symmetry to fields other
than crystallography has been sporadic. “Reinventing the wheel” pervades the
literature as a number of individuals have separately discovered that symme-
try can be a useful analytical tool. Many authors appear unaware of other sim-
ilar work and there appears to have been, until the last decade, little follow-up
on these isolated pioneering introductions.

Our short historical discussion here can be merely an introduction to the lit-
erature in this important field. We make no guarantee to present an exhaus-
tive listing of these efforts. Publication in obscure serials and the isolated,
singular nature of many of these studies make omissions almost certain.



