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Preface

The physics of a pseudochaotic kicked oscillator could hardly be simpler: a one-
dimensional harmonic oscillator, subjected to impulsive kicks in resonance with
the natural frequency, with the amplitude of the kicks a periodic, piecewise linear
function of the position. As with other nonlinear systems, the simple dynamics can
produce, over a long time, exceedingly complex behavior, typically too complex
for meaningful mathematical analysis or even reliable numerical experiments. For-
tunately, a special choice of parameters provides the key to a remarkably detailed
understanding of the long-time asymptotics. That key is renormalizability. To show
how renormalizability leads to a wealth of exact results, as well as powerful compu-
tational tools for exploring long-time asymptotics, has been my principal objective
in writing this monograph. The exposition is reasonably self-contained, with refer-
ences to the literature where supplementary details are needed. The methods used
are largely traditional ones which should be accessible to readers with a modest fa-
miliarity with the dynamics of low-dimensional Hamiltonian systems. No previous
acquaintance with pseudochaos is assumed.

This book weaves together a number of important threads drawn from a long,
productive, and continuing collaboration with Franco Vivaldi at Queen Mary, Uni-
versity of London. Our research program, initiated in 1995, has resulted in a number
of published articles on the topic of piecewise isometries and their various man-
ifestations, including Hamiltonian round-off, interval exchange transformations,
kicked-oscillator models, flights, and pseudochaos. Over the years, other researchers
have contributed significantly to the enterprise, notably Gullaume Poggiaspalla,
Konstantin Kouptsov, Sangtian Liu, and Spyros Hatjispyros.

In writing the book, I have drawn liberally from the published results, tying them
together and also adding considerable new material, and new perspectives, in order
to fashion a coherent whole. Central to the story is the unifying role of the symbolic
dynamics. A detailed description of the latter, including the previously unpublished
derivation of admissibility rules, appears in Chapter 3. In addition, the discussion
of transport in Chapter 6 is entirely new. Finally, Chapter 7 integrates the results on
Hamiltonian round-off, originally published during 1997—2000, into the full story,



viii Preface

with the inclusion of a new numerical experiment to provide fresh evidence for some
of the main conclusions.

Over the years, my collaborators and I have benefited from generous short-term
support of our research from the Engineering and Physical Sciences Research Coun-
cil (EPSRC) and The Royal Society. The continuing hospitality and support of the
Department of Physics, New York University and the School of Mathematical Sci-
ences of Queen Mary, University of London, have been crucial to both the research
program and the writing of this book.

Some of the figures in the book have been copied, with permission of the pub-
lishers, from articles in the journals Physics Reports (Elsevier), Nonlirearity (10P),
and Communications in Nonlinear Science and Numerical Simulation (Elsevier).

Portions of the first five chapters were originally included in a series of pedagog-
ical lectures at the National University of Singapore (NUS) in August, 2006. I very
much appreciate the hospitality and financial support provided by the Institute of
Mathematical Sciences of NUS at that time.

Finally, I want to thank Valentin Afraimovich and Albert Luo for their advice
and encouragement throughout the writing of this book.

New York, August, 2011 John H. Lowenstein
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Chapter 1
Introduction

In this initial chapter, we introduce a class of one-dimensional kicked oscillator
models whose crystalline symmetry and renormalizability will allow us, in the
course of this book, to explore the rich and varied relationships between dynami-
cal self-similarity at the local level and transport on the infinite phase plane.

1.1 Kicked oscillators

The dynamics of a periodically kicked oscillator is governed by a Hamiltonian of
the form (in convenient units)

H(x,y):%(x2+y2)—F(x)26(1—27mp), (1.1)

n

where the rotation number p is the number of instantaneous kicks per natural period.
It is assumed that the kicks are in resonance with the unperturbed oscillations, so
that p is a rational number, and that the derivative f(x) = F’(x) is a periodic function
of the oscillator position. Hamilton’s equations of motion take the form

_OH_ o _oH _
$= 5y = y_~ax_—x+f(x);6(t 2mpn). (1.2)

Between successive kicks, the system undergoes free oscillation, depicted in the
x,y phase space as uniform clockwise motion on a circular arc of arbitrary radius and
angle 27p. This is followed by an instantaneous momentum shift y — y+ Ay, where
Ay is given by the kick function f(x). In Fig. 1.1, we illustrate such a phase-space
orbit for a 4-fold resonance and a sinusoidal kick function. The example is typical of
kicked-oscillator models, introduced in the 1980’s by Zaslavskii et al. (1986, 1991)
to model the interaction of electromagnetic waves with gyrating charged particles in
a plasma, and more abstractly, to illustrate the dynamical generation of crystalline
and quasicrystalline order in 2-dimensional phase space.



2 1 Introduction

1.2 Poincaré sections

The simplicity of the motion between kicks in Fig. 1.1(a) suggests that it might
be advantageous to adopt a stroboscopic point of view, regarding the essence of
the dynamics to be a discrete (Poincaré) map W connecting the phase-space points
(xn,yn) at which the kicks are initiated. Explicitly, we have

. TR2 2 X cos2mp  sin2mp x
wiriow,  (F)o (S ) (kg

As is typical of dynamical systems with one degree of freedom and periodic forcing,
the stroboscopic phase space (Poincaré section) is partitioned into disjoint invariant
subsets. These subsets may be collections of points (periodic orbits), curves (quasi-
periodic orbits) and more complicated sets (stochastic layers) populated in part by
chaotic orbits. The discreteness of the dynamical map makes it especially easy and
efficient to visualize such sets via computer-assisted iteration.

() (b)

Fig. 1.1 Quasiperiodic orbits of the sinusoidal kicked oscillator with F(x) = —acosx, a = 0.8,
calculated over (a) 5 and (b) 50 oscillation periods. Points of the Poincaré section are shown as
large dots.

Figure 1.1(b) follows the orbit of Fig. 1.1(a) through 200 kick periods (50 os-
cillation periods). The phase-space orbit occupies an approximately annular re-
gion with numerous self-intersections. Without emphasizing (with dots) the points
of the Poincaré section, the pattern would be confusing. Further iteration would
make matters worse, since we would eventually be left with a featureless annu-
lar region overlapping those of nearby orbits. The Poincaré section, on the other
hand, reveals the topological simplicity of the orbit, which, viewed stroboscopi-
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cally, fills out quasiperiodically four symmetrically placed closed curves. Choosing
other initial conditions reveals a “phase portrait” in which the curves of the exam-
ple are part of an infinite family of orbits circulating around the periodic points
(n,m), (n,—m), (—m,—n), (—=m,7), as shown for example, by Fig. 1.5(b) in Sect.
1.4.

For p = 1/4 in general, the Poincaré map (1.3) simplifies to

W(i) N (—(1) é) <y+)}(x)) - <y+f;(x)> (1.4)

For reasons which will become apparent below, the map W of (1.4) is often referred
to the 4-fold web map, and we will use this terminology in the remainder of the
book.

1.3 Crystalline symmetry

The 4-fold web map provides a simple and elegant theoretical laboratory for study-
ing transport in a low-dimensional Hamiltonian system. This is due in large part to
its crystalline symmetry. Specifically, suppose that the kick function f(x) has period
7, and that , for T > 0, f(x) is continuous from the right on [0, 7), while, for T < 0,
f(x) is continuous from the left on (7,0]. Then every point of the real plane can be
uniquely decomposed as the sum of a local vector u in the fundamental domain

[0,7)2 >0,
Q=
(1,0 1<0,

and a global vector tTm, m = (m,n) € 7.
From (1.4), we have, forallu € Q,m € 72,

W(u)+7I-m, I_<—(l) é) (1.5)

Since I is the identity, we get from (1.5) the discrete translation invariance of the
fourth iterate of W: for all x € RZ, m € Z?,

W4 (x+tm) = W4(x) + m. (1.6)

Figure 1.3 illustrates the decomposition (1.5) for a hypothetical choice of f(x) de-
picted in Fig. 1.2.

To take full advantage of the local-global decomposition, we now introduce the
piecewise continuous local map K : £ — €2, defining, for all u = (u,v) € Q,

K(u)=W(u)-td), d@)= (7" (v+f()],~1)eZ?
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Sx) |

B

Fig. 1.2 Graph of some kick function f(x) on [0,1).

so that, for allu € Q, m € Z2,
W(u+1tm) = K(u) + 7Ly(m),
with the lattice isometry (rotation composed with lattice translation)
Ly(m) =1 -m+d(u).

The action of K on £, for the example of Fig. 1.3, is shown in Fig. 1.4. We
note that for piecewise continuous f(x), the unit square €2 is partitioned into re-
gions €2;, i = 1,2,...,v on which the lattice translations d(u) are constant. Thus

wm |2 P

Fig. 1.3 Action of W(x).
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0 — 0

ANd

0,0) 01) ' 0,0)

Fig. 1.4 Construction of K (u) for the map of Fig. 1.3.

Ly depends on u only through the index i(u), u € €2(u), and we can express the
local-global decomposition of W (x) as

W(u+ Tm):K(u)+1Li(u)(m), 1.7

where

How does the crystalline symmetry of the dynamics, expressed through (1.7),
facilitate the investigation of chaotic transport? For the latter, the asymptotic long-
time behavior mimics the effects of a random walk on the plane, in which successive
steps are dictated by the results of independent coin tosses. Clearly it is the deter-
ministic chaos of the local map K which plays the role of the coin tosses, producing
a “code” sequence ij,i,..., which in turn determines a sequence of steps on the
infinite lattice. For asymptotically long times, it is the statistical distribution of the
code-driven lattice coordinates which may in some sense exhibit diffusive behavior.

1.4 Stochastic webs

Although the main focus of this book is on maps which possess only some of the
features of true chaos (hence the term pseudochaos), it is important, to properly
understand the motivation for this work, that we focus first on the chaotic stochastic
web map with kick amplitude

f(x) =asinx.

While the quasiperiodic orbits shown in Fig. 1.1(b) are restricted to only four cells,
the same is not necessarily the case for chaotic orbits originating in the vicinity of
one of the points (m7m,nx), m+n odd. The linearized map approximating W* there
is a 2 x 2 matrix, with one real eigenvalue greater than 1, the other less than one, so
that these points are saddle points. By selecting initial points near one of these sad-
dle points, say (m,0), it is easy to simulate numerically the orbits of the stochastic
layer in which it is embedded. Each saddle point acts as a kind of random gate: on



