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PREFACE

This book contains the formal lectures and contributed papers presented at the NATO
Advanced Study Institute on Biomolecular Structure and Dynamics : Recent Experimental and
Theoretical Advances. The meeting convened at the city of Loutraki, Greece on 27 May 1996
and continued to 6 June 1996.

The material presented describes the fundamental and recent advances in experimental
and theoretical aspects of molecular dynamics and stochastic dynamics simulations, X-ray
crystallography and NMR of biomolecules, structure prediction of proteins, time resolved
Fourier transform infrared spectroscopy of biomolecules, computation of free energy,
applications of vibrational circular dichroism of nucleic acids and solid state NMR
spectroscopy.

In addition, recent advances in UV resonance Raman spectroscopy of biomolccules
semiempirical molecular orbital methods, empirical force ficlds, quantitative studies of the
structure of proteins in water by Fourier transform infrared spectroscopy, density function
theory (DPT) were presented.

Metal-ligand interactions, DFT treatment of organometallic and biological systems,
simulation versus X-ray and far-infrared experiments are also discussed in some detail. In
addition, a large proportion of program was devoted to current experimental and theoretical
studies of the structure of biomolecules and intramolecular dynamic processes.

The purpose of the proceedings is to provide the reader with a rather broad perspective
on the current theoretical aspects and recent cxperimental findings in the field of biomolecular
dynamics. Moreover, the material presented in the proceedings should make apparent the future
trends for research in this ficld, as well as could provide grants for collaborative rescarch
between theoreticians and experimentalists in areas of importance to the understanding of
biomolecular structure and dynamics.

The proceedings should be of interest to graduate and postgraduate students who are
involved or starting rescarch in these areas, and to scientists who are actively pursuing rescarch

in biomolecular structure and dynamics.
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Appreciable part of the information contained in the proceeding has not yet been

published in books on biomolecular structure and dynamics.

G. Vergoten
T. Theophanides
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THE PHYSICAL CHEMISTRY OF SPECIFIC RECOGNITION

J. JANIN
Laboratoire d'Enzymologie and Biochimie Structurales, CNRS UPR 9063
Bat. 34, 91198 Gif-sur-Yvette, France

1. Introduction

It is our opinion that the processes of synthesis and folding of highly complexes molecules
in living cells involve, in addition to covalent bonds, only the intermolecular interactions of
van der Waals attraction and repulsion, electrostatic interactions, hydrogen-bond formation,
etc., which are now well understood. These interactions are such as to give stability to a
system of two molecules with complementary structures in juxtaposition...

In order to achieve maximum stability, the two molecules must have complementary
surfaces, like die and coin, and also a complementary distribution of active groups.

L. Pauling & M. Delbnrick (1940) (1]

The reader of these remarkable sentences should remember that they were
composed four years before Avery, McLeod & McCarty showed DNA to be the
molecule genes are made of, fifteen years before Fred Sanger sequenced insulin, and
twenty years before Max Perutz & John Kendrew obtained the X-ray structure of
myoglobin. In 1940, Linus Pauling and Max Delbriick had no experimental evidence
whatsoever to support their statements. They were addressing colleagues in physics and
chemistry rather than biologists who, in these times, seldomly spoke in terms of atomic
interactions. Still, in the US at least, biologists were ready to consider physical
chemistry as a partner science in the study of the mechanisms that rule the cell and the
organism. Figures like Pauling and Delbriick were in the lead, and they were so fully
right in this particular case that we find not a word must be changed in their definition
of complementarity, which makes it possible for two (macro)molecules to assemble into
a specific stable complex. The only question we may ask at the end of this century, is
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whether we can make Pauling and Delbriick’s definition quantitative and find numbers
that express specificity and stability.

2. Affinity and the law of mass action: ecuilibrium and rate constants

For stability, the answer seems an easy yes. A non-covalent complex being ruled by the
Gulberg-Waage law of mass action, the reaction formula:
ka
A+B<— > AB (1)
kg

implies a relationship between the equilibrium concentrations of components A and B
and complex AB:

K¢ =K "k = [AB] 2

Ka and Ky are the two equilibrium constants, k, and kq the two rate constants for
association and dissociation. Ky (or its reciprocal K;) measure the stability of complex
AB and the affinity of A and B for each other. K4 values in the micro- or nanomolar
range can be derived by measuring concentrations at equilibrium. This is no longer
possible when the affinity is much higher. Then, it is more practical to measure the two
rate constants, the ratio of which yields Kq values in the picomolar range or below.

The second order rate constant ka has an upper value that comes from the
stochastic diffusion of molecules in solution: k;=109 M-1.s-1 in water at 25°C. Table 1
quotes rate constants for typical specific protein-protein complexes: two enzyme-
inhibitor and one antigen-antibody complexes. The enzyme is bovine trypsinin one
case, a bacterial ribonuclease, barnase, in the other. The antigen is hen lysozyme, the
antibody, a covalent pair of E. coli expressed variable domains (single chain Fv).
Affinities cover six orders of magnitude with Kg = 10-8 -10-14 M, mostly due to kg, ka
being 106-108 M-1.s-1. Barnase, barstar and the Fv fragment have been subjected to site-
directed mutagenesis. In mutant R59A of barnase, part of a long series analyzed by
Schreiber & Fersht [2-3], the point substitution makes the affinity drop by a factor of
104. Variant M3 of the Fv fragment has been selected by phage display to raise the
affinity for lysozyme by a factor of 5 [4]. Similar changes are observed upon point
substitution in other systems.



Table 1: Experimental rate and equilibrium constants in some protein-protein complexes

Complex ka kd K4 AGq AAGq
M-Ls1y (O] M) (kcal.mol"1)
Trypsin-PTI 2 1.1.106 6.6.108 6.10'14 18.1 .
Barnase-barstar P 3.7.108 3.7.106 1.10-14 19.0 -
R59A variant 3.4.107 2.4.10°3 7.10°11 138 5.4
Lysozyme-Fv D1.3 € 1.8.106 6.10-3 3.109 117 .
M3 variant 1.6.106 1.103 6.10°10 126 09

Values near 25°taken from:
(a) Vincent & Lazdunski [21]; (b) Schreiber & Fersht [2]; (¢) Hawkins and al. [4]

The higher affinity of variant M3 is entirely due to the lower rate of dissociation.
In contrast, barnase mutation R59A both increases kg by a factor of 103 and lowers ka
by a factor of 10. It should be stressed that barnase-barstar association is extremely fast,
with ka near the diffusion limit for molecules having M; =10 kDa. Nearly every
collision between barnase and barstar must yield a specific stable complex. This may
seem absurd if we consider that the contact region (covering the enzyme active site) is
no more than 10-15% of each component surface. A mutation such as R59A that
modifies the net electric charge of barnase as well as the k, value, shows that the
association between barnase and barstar is electrostatically assisted [2-3). At very high
ionic strength, long-range electrostatic interactions are shielded and k, drops by over
four orders of magnitude to =105 M-1.s-1, a value compatible with the precise geometry
observed in the complexe.

3. Enthalpies, free enthalpies and entropies

Affinity may also be defined in terms of the usual thermodynamic parameters, the
enthalpy H (internal energy at constant pressure), the entropy S and the free enthalpy G
(Gibbs energy). Changes in these parameters are quoted in reference to a 'standard’
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state, per mole of product of reaction (1) and in either direction. We choose to quote
values for dissociation, and signs must be changed for association:

AGg=-RTIn %‘1 3)
9

Here, R is the gas constant (=2 cal.mol-1.K-!), T the temperature and Cg, the
concentration taken to be the standard < ate. For solution studies, the usual convention is
Cg=1 M, yet this is an arbitrary choice and C4=55,5 M, the molar concentration of pure
water, is sometimes used. Moreover, tabulated values almost never use this convention:
they relate to the pure liquid or solid chemical species. not to aqueous solution. The Cg
convention is unimportant when comparing the affinity of two different ligands for the
same site or, as in Table 1, the affinity of a mutant and and the wild type of the same

protein. The dissociation changes from Kgto K'g, the free enthalpy change from AGy
to AG4g+AAGy:

Kq

AAGg= RTIn Ky “)

The free enthalpy of dissociation AHy does not depend on Cg. It can be derived from Kq
measurements made at several temperatures by applying Van t'Hoff law:

_ dAGYT) _ . d(nKg
8o = Gy = R ©

Then, the entropy of dissociation AS4 (which does depend on Cy) is derived from:
AGg=AHq- TASq (6)

In recent years, a direct determination of AHy can be made by isothermal mixing
calorimetry as the heat evolved when two solutions are mixed [5]. By performing

measurements at several temperatures, the heat capacity of dissociation ACyq comes out
as:

_ d(AHg) _ .. d(ASq)
aC= =g =T=gr ™

Assuming ACqto be a constant in the temperature range under study, one may
integrate Eq. 7 and predict AHg, ASg and AGgq at all temperatures knowing K4 and AHq4
at 25°C (Tg=298K) only. Fig. 1 shows the result for a lysozyme-antibody HyHELS
complex [6]. In this particular case, ACp, AHg and ASq all have positive values:
association releases heat, a favourable enthalpy stabilizes the complex and a
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unfavourable entropy fights it. In other systems, negative values of AHg or AS4 can be
observed at 25°C. Moreover, ACq is high. Therefore, both the enthalpy and the entropy
vary quickly and change sign with temperature. In the lysozyme-HyHELS complex,
ASq is negative below 0°C. Then, entropy favours complex formation - but that
statement is valid only at concentrations above Cg=1M !

AGd !

kcal/mol

T(°C)

Figure I: Temperature dependence of thermodynamic parameters for the lysozyme-antibody HyHELS
complex. AHg was measured by isothermal mixing calorimetry at several temperatures between 10° and

37°C yielding AC3=0.34 kcal.mol"1.K-! [6] and the dissociation constant at Tg=278K (25°C). Assuming
AC{ to be temperature-independent, we have at all temperatures:

AH4 (T) = AHq (TQ) + (T-TQ)ACq and  ASq (T) =ASq (TQ) + ACq In Tlo

The temperature dependence of enthalpy and entropy almost exactly compensate each other; thus, AGg
varies by <1 kcal.mol"! between 0 and 37°C, whereas K{ (dashes) changes by a factor of 100.



