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Preface

This book is an introduction to the main concepts of number theory at the
undergraduate level. We hope that our treatment of number theory reads
almost like a story, with each new topic leading naturally to the next. We
begin with the ancient Euclidean algorithm for finding the greatest common
divisor of two integers, and we end with some modern developments, including
the theory of elliptic curves. Along the way, we cover a diverse array of topics
that should appeal to students and instructors, as well as casual readers simply
wishing to learn about the mathematics of the natural numbers.

Many patterns in number theory are revealed through some amount of com-
putational experimentation. Some of these calculations can be done by hand
with nothing more than pencil and paper, or perhaps with the use of a sim-
ple calculator, or maybe even an app on a smartphone. Other calculations,
which may involve large (e.g., two hundred digit) numbers may require more
sophisticated computational tools. The first edition of this book contained
numerous examples of such calculations carried out with the use of the com-
puter software systems Mathematica® and Maple™ . In order to allow for
greater flexibility for the instructor, we have removed these embedded exam-
ples from the text and have made them available along with brief tutorials
on Mathematica and Maple online. We also provide code for carrying out
calculuations in the book using Sage, free open-source mathematics software
system. All of these can be found at

tvazzana.sites.truman.edu/introduction-to-number-theory/

Number theory is a vital and useful branch of mathematics. We make every
attempt to show connections between number theory and other branches of
mathematics, including algebra, analysis, and combinatorics. We also demon-
strate applications of number theory to real-life problems. For example, con-
gruences are used to explain the ISBN system; modular arithmetic and Euler’s
theorem are employed to produce RSA encryption; and quadratic residues are
utilized to construct round-robin tournaments. An entire chapter is devoted
to cryptography.

The contents of the book have been reorganized in this edition to provide
a wide range of options for course design. We recommend that instructors
cover Chapters 1 — 7 (which serve as a foundation), plus a selection of other
chapters of their choice. In terms of rigor and prerequisites, the text is upper-
level undergraduate, meaning that some previous experience with proof-based
mathematics is assumed. Chapters 17 amd 18 demand a greater level of

xi



xii Preface

mathematical maturity, where some exposure to abstract algebra and analysis
would be helpful (although we supply the relevant background information).
We have not included Chapter 19 - Logic and Number Theory in the print
version of the book, but it is available on the website indicated above. The

chapter dependencies are shown in the following graph.
I 18.6

17 18
12 19
Some Some
10 14
1 Analysis| Algebra
15 16 9 13 Mathem{ltica.l gl9
Maturity

Chapters 1-7

The exercise sets encompass a wide variety of problems and have been
greatly expanded in this edition. Many exercises relate number theory to
other areas of mathematics or other fields (e.g., music). The problems range
in difficulty from very easy and just-like-the-examples to quite challenging.
Exercises designated with a star (x) are particularly difficult or require ad-
vanced mathematical background; exercises designated with a diamond (o)
require the use of a calculator or computer; exercises designated with a dag-
ger (1) are of special theoretical importance.

We thank those colleagues who provided suggestions about our work: Ben-
jamin Braun, University of Kentucky; Robert Dobrow, Carleton College;
Suren Fernando, Truman State University; Joe Flowers, St. Mary’s Univer-
sity (San Antonio); Joe Hemmeter, Ancor Corporation; Daniel R. Jordan,
Columbia College of Chicago; Ken Price, University of Wisconsin-Oshkosh; H.
Chad Lane, USC Institute for Creative Technologies; Chad Meiners, Michigan
State University; Khang Tran, Fresno State University. Finally, we thank the
people at CRC Press for their support during the realization of our project.
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Chapter 1

Introduction

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk.

[The good Lord made the whole numbers; all else is the work of
man.|

LeEoroLD KRONECKER (1823-1891)

1.1 What is number theory?

The natural numbers (i.e., the positive integers) are the counting numbers
1,2,3,4,5,6,7,....

These numbers are one of the oldest, most universal concepts of mathematics.
Number theory is the study of properties of the natural numbers.

One of the central issues of number theory is that of factorization and in
particular prime numbers. A prime number is a natural number greater than
1 that is not a product of two smaller natural numbers. Thus, the prime
numbers are

2,3, 5, T3 11,13, 17,4 o1

We will show that every positive integer greater than 1 can be (uniquely)
written as the product of prime numbers. Therefore, understanding prime
numbers is crucial.

A particularly appealing aspect of number theory is that one can start with
a simple concept and quickly come upon deep, difficult-to-solve problems. An-
other attractive feature is that many interesting patterns are revealed through
example calculations that are easy to carry out.

We illustrate these two points with a few questions about prime numbers.
First, how many prime numbers are there? Over two thousand years ago,
Euclid provided a simple, elegant proof that there are infinitely many. (We
will give this proof in Section 4.3.)



2 1 Introduction

Let’s delve a little deeper. Apart from the number 2, all primes are odd.
Consequently, when we divide any prime greater than 2 by the number 4, the
remainder must be either 1 or 3. In other words, any prime other than 2 can
be written in the form 4k 4+ 1 or 4k + 3, for some integer k. For example,
13=4-341 and 19 =4-4 4 3. One can easily work out representations for
the first few primes, as shown below.

Prime Representation

3 4-0+3
5 4-1+1
7 4-1+3
11 4:2+3
13 4-3+1
17 4-4+1
19 4-4+3
23 4-5+3
29 4-7+1
31 4-7+3

We see that four of the first ten odd primes are of the form 4k + 1 while the
remaining six are of the form 4k + 3. With the aid of a computer one can
easily make similar calculations for a much larger sample. The table below
indicates how the first n odd primes are divided between the two sets.

n  Primes of the form 4k +1 Primes of the form 4k + 3

10 4 6
100 47 53
1000 495 505
10000 4984 5016
100000 49950 50050

By modifying Euclid’s proof one can show without substantial effort that
there are an infinite number of primes of the form 4k +3 (see Proposition 4.9).
Strangely, it is not as easy to show that there are an infinite number of primes
of the form 4k + 1. However, with the introduction of some mathematical
machinery, we will be able to prove that there are an infinite number of such
primes. Our data above suggest that there is more to the issue than the
infinitude of both sets. For each value of n, approximately half of the primes
are in each set. Moreover, the larger 7 is in our table, the closer the percentage
of each type is to 50%. Developing even heavier machinery (which is beyond
the scope of this book), one can show that this pattern continues. That is,
the percentage of the first n primes of the form 4k + 1 approaches 50% as n
grows larger.

One can ask similar questions about the number of primes of the form
ak + b, for fixed integers a and b. Again, with a good deal of effort one can
give a satisfactory description of what goes on. If we modify things a bit
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in a different direction, the problem becomes decidedly much more difficult.
Consider the following question: Are there an infinite number of primes of the
form k% + 1? For example, 5 is such a prime, as 5 = 22 + 1. On the surface,
this question doesn’t seem much more difficult than the ones above, but at
the present time, no one can provide an answer.

In addition to the issue of prime numbers, another central issue of number
theory that we will visit repeatedly is that of solving Diophantine equations.
A Diophantine equation is a polynomial equation in one or several variables
with integer coefficients, for which we are interested only in integer solutions.
The name is given in honor of the Greek mathematician Diophantus whose
book Arithmetica contains a collection of problems of this type. Consider, as
an example, the Diophantine equation

2z -5y =1, (1.1)

This equation has solutions, for instance, z = 3, y = 1. On the other hand,

the Diophantine equation
2r —4y =1 (1.2)

has no integer solutions, because all integers of the form 2x — 4y are even and
therefore cannot equal 1. Right away we see that Diophantine equations that
look similar may behave dramatically differently. In fact, given a Diophantine
equation, it is often a difficult problem to determine whether the equation has
integer solutions. In general, given an equation that has solutions, we would
like to know how many solutions there are and, if possible, describe the set
of solutions completely. For linear Diophantine equations, such as (1.1) and
(1.2) above, one can do just that. We will see that the equation (1.1) in fact
has an infinite number of solutions, and we will show how to generate all

solutions.
Another interesting Diophantine equation has a familiar look to it. The

equation
z? +y? =22 (1.3)

gives the relationship for the sides of a right triangle according to the famous
Pythagorean theorem. One solution to this Diophantine equation is z = 3,
y = 4, z = 5. With a little experimentation, it is easy to find several more
solutions. With additional effort, we will completely describe the (infinite)
set of all solutions to this Diophantine equation (see Section 11.1). Now let’s
modify the equation (1.3) slightly to

2?4y =23 (1.4)

Certainly, we can find solutions to this equation by taking = 0 and setting
y = z. Solutions of this type (where one of the variables is 0) are in some sense
trivial, and so we ask are there any nontrivial solutions? Experimentation by
hand (or computer) turns up nothing. It isn’t immediately clear why the
equation (1.3) has nontrivial solutions while the equation (1.4) would not,
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but this does prove to be the case. In fact, for any integer n greater than 2,
the Diophantine equation
J:TI _+_ ,yn — zn

has no nontrivial solutions. This statement was first given by Pierre de Fer-
mat in the 17th century. Much of Fermat’s work comes to us in the form
of marginal notes he made in his copy of Diophantus’ book. These were
published after his lifetime. The statement above, now known as Fermat’s
Last Theorem, was one such marginal note. Along with his observation that
these equations have no nontrivial solutions, he added the following tanta-
lizing statement. “I have discovered a truly marvelous proof of this which
however the margin is not large enough to contain.” No proof of the theorem
was ever found among Fermat’s papers except for the special case n = 4. The
history of the effort to prove Fermat’s Last Theorem is a colorful one. In
addition, many important mathematical ideas were developed along the way.
Finally, in 1995, the proof of the theorem was completed with work done by
Andrew Wiles.

Number theory is a beautiful subject in its own right and needs no appli-
cations to justify its study. However, applications ranging from the simple
to the sophisticated do exist and are used in the world all around us. Any
sort of identification number one might encounter (e.g., ISBN codes on books,
UPC symbols on merchandise, and ABA routing numbers on checks) is likely
to have some number theory built into it. These applications help to de-
tect and in some cases correct errors in transmission of such numbers. On a
deeper level, using an easy-to-perform procedure, one can encrypt data with-
out knowing how to decode it. As a result, a customer can encode a credit
card number for safe passage to an online merchant over the Internet. At the
same time, third parties are prevented from stealing credit card numbers from
customers because the method of decoding is known only to the merchant.
This application demonstrates again the recurring theme we have developed
above: elementary ideas live side by side among the complex in the world of
number theory.

1.2 The natural numbers

The origins of number theory are found in simple observations about the
natural numbers. We denote the set of natural numbers by N; that is,

N ={1,2,3,4,5,6,7,...}.

Given a pair of natural numbers, we may compute their sum and product
and obtain a natural number as a result. The operations of addition (+)
and multiplication (-) conform to a list of familiar properties (associativity,



