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Preface

This book gives a systematic treatment of the basic theory of regularized semigroups
of bounded linear operators on Banach spaces, and of how such a theory may be
applied to non-elliptic differential operators. It takes into account the development
of the theory during the last twenty years, after the publication of the monograph
[45] by deLaubenfels in 1993.

It is well known that the most important application of semigroups of operators
is found in partial differential operators (PDOs) and the associated initial value
problems(IVPs). However, the applications of classical semigroups of operators, Cy-
semigroups, to PDOs are limited. A typical example is that the Schrédinger operator
iA does not generate a Cy-semigroup on L?(p # 2)1103],

Two important generalizations of Cp-semigroups, regularized semigroups and
integrated semigroups, have received much attention since 1987 (see [45] and the
references therein). The main reason is that their applications to elliptic and non-
elliptic PDOs. In the first several years that these two classes of semigroups were
introduced, there seemed to be a common bias that integrated semigroups were
more useful than regularized semigroups. Over the last two decades, people have
got some further understanding on the importance of applications of regularized
semigroups to non-elliptic PDOs. Here are some reasons why regularized semigroups
have advantage over integrated semigroups:

(a) The resolvent set of the generator of an integrated semigroup must be non-
empty, even in the case of local integrated semigroups (207] In contrast, the resolvent
set of the generator of a regularized semigroup may be empty. There are many non-
elliptic PDOs whose resolvent sets are empty (see, for example, [177]) thus they
cannot generate integrated semigroups.

(b) Regularized semigroups keep more algebraic properties than integrated semi-
groups, and thus are easier to handle. An example is that regularized evolution
families can be defined and applied to PDOs with time-dependent coefficients, see
Chapter 6. However, it is difficult to define integrated evolution families. Another
example is that Schrodinger operators with suitable potentials on LP(R™)(p # 2) can
be treated conveniently by regularized semigroups [26- 169 while it is unpleasant to
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treat Schrodinger operators even without potentials by integrated semigroups [T,

(c) The classical solutions of abstract Cauchy problems associated with the gene-
rator of a regularized semigroup can be represented more naturally by the regularized
semigroup. However, one has to meet with fractional powers for a representation of
the solution via a fractional integrated semigroup, see Chapter 3. It is known that
dealing with fractional powers of PDOs, even strongly elliptic PDOs, is a difficult
and complex task 22/, In addition, it is hard to determine the behavior of the
classical solution by looking at the integrated semigroups.

(d) The choice of the regularizing operator is flexible. For a concrete PDO with
constant coefficients satisfying some conditions there are different ways to choose a
regularizing operator C' such that this PDO generates a C-regularized semigroup.
It is possible that a better choice of the regularizing operator yields a bigger initial
value space for the corresponding IVP than that one gets by integrated semigroups
approach.

The book is organized as follows. The first two chapters provide a systematic in-
troduction on the theory of regularized semigroups. Chapter 3 gives a short account
of the theory of integrated semigroups, and the relationship between regularized
semigroups and integrated semigroups. Chapters 4 and 5 treat PDOs that gene-
rate regularized semigroups or integrated semigroups, with an emphasis on why
the regularized semigroup is a more appropriate tool for non-elliptic PDOs. Chap-
ter 6 is devoted to the construction of regularized evolution family for PDOs with
time-dependent coefficients, while Chapter 7 gives the applications of regularized
semigroups to systems of partial differential equations including parabolic, correct
and hyperbolic systems. Chapter 8 gives the recent development of the applications
of regularized semigroups to Schrodinger operators of higher orders with the help of
oscillatory integral theory.
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Chapter 1

Regularized Semigroups

We present in §1.1 the definitions and basic properties of regularized semigroups.
Some generation theorems for regularized semigroups are provided in §1.2. The
relations between regularized semigroups and Cy-semigroups via interpolation and
extrapolation spaces are given in §1.3. We also consider different classes of regula-
rized semigroups, such as contractive, norm continuous, differentiable, analytic and
almost periodic regularized semigroups in §1.4. Finally, we will give the relation
between regularized semigroups and the solutions of abstract Cauchy problems.

1.1 Definitions and properties

We start with the definition and basic properties of regularized semigroups. Let X
be a Banach space, B(X) the space of all bounded linear operators on X, and C an
injective operator in B(X). Moreover, the standard symbols are listed at the end of
this book.

Definition 1.1.1 A strongly continuous family 7: [0, co) — B(X) is called
a C- regularized semigroup if T(0) = C and T(t + s)C = T(t)T'(s) for t,s > 0. Its
generator A is defined by

Az = C'_l(lim M)
t10 i

with maximal domain, i.e., D(A) = {z € X : the above limit exists and is in R(C)
(the range of C)}.

It is obvious that if C = I (the identity), then {T'(#)}+>0 is a strongly continuous
semigroup (Cp-semigroup, in short). However, the following examples show the
difference between regularized semigroups and Cy-semigroups.

Examples 1.1.2 (a) Let Af(z) = zf(z) with maximal domain on L?(R).
Then A is an unbounded self-adjoint operator in L?(R) and generates the A
regularized semigroup given by 7'(t) = etA=4% for t > 0. A short calculation shows

that | T(t)|| = et’/4 (t =2 0), this means that {T'(f) }+>0 is not exponentially bounded.
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(b) Let X = Cyp[0,00) := {f € C[0,0) : f(z) — 0asxz — oo}, Af = —f with
D(A) ={f € XNCY0,00): f(0)=0}. Then (0,00) C p(A), and A generates the
R(1, A)-regularized semigroup {R(1, A)S(t)}¢>0, where

ife—t>0,
ife—t<0.

sen@={ 5"

But D(A) = {f € X : f(0) =0}, and thus A is not densely defined on X.

The basic properties of C-regularized semigroup and its generator are collected
in the following.

Theorem 1.1.3 Let A be the generator of C-reqularized semigroup {T(t)}i>o0.
Then the following assertions hold.

(a) If f € CY([0,00),X), then /tT(s)f(s)ds € D(A) and
0

A / T(s)f(s)ds = T(£) f(t) — C£(0) — / T(s)f'(s)ds (t>0).  (LL1)
0 0

Particularly,

A/tT(s):L-ds —T@)z—Cz (@eX, t>0) (1.1.2)
0

(b) For x € D(A) andt > 0, T(t)z € D(A) and %T(t)x = AT (t)x = T(t)Ax.
Consequently,

T(t)x —Cxz = /tT(S)A.TdS (x € D(A), t =2 0). (1.1.3)
0

t
(¢c) D(A) = {z € X : there exists y € X such that T(t)r — Cz = / T'(s)yds for
t >0} and Az = y. ’
(d) A is closed, R(C) C D(A) and A= C~1AC.
(e) {T'(t)}i>0 is a unique C-reqularized semigroup generated by A.
i (f) If C is an_injective operator in B(X) and CT(t) = T(t)C fort > 0, then
{CT(t)}tz0 is a CC-regularized semigroup generated by A.

Proof We first note that for t > 0, CT(t) = T(t)C and, by the resonance
theorem, sup{||7(s)|: 0 < s <t} < 0.
(a) For t > 0, a simple calculation leads to
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1 t
(TR~ ©) / T(s) f(s)ds

t+h h
- % [ T(s)f(s — h)ds — ]—t/O CT(s)f(s)ds
5 | CT@ ) - (s = m)ds

t
L CTW(t) - C*£(0) - /O CT(s)f(s)ds,

as h — 0, which implies (a).
(b) Fix x € D(A) and t > 0. For h > 0,

%(CT(t + h)z — CT(D)z) = %(T(h) —O)T(t)z = T(t)%(T(h)m —Ca).

Letting h | 0 we obtain that T'(t)r € D(A) and
d+
TCT(t)m = CAT (t)x = CT(t)Ax.
¢
. L d d*
Since CT(-)Az € C([0,),X), this gives —ECT(t):L' = ECT(t)m, and thus the
a
claim is easily deduced from the assumptions on C.
(c) Since C'is injective, it is clear that y is uniquely determined by z. By (1.1.3)
t
it remains to show that if 7'(¢)x — Cz = / T'(s)yds for t > 0, then x € D(A). This
0
follows from

t
%(T(t).li —Cz) = %/0 T(s)yds — Cly,

as t — 0.
(d) Taking a sequence {x, } C D(A) such that x,, — = and Az,, — y. Then, by
(1.1.3), for t > 0,

n—oo

T(t)xz — Cx = lim (T'({)z, — Cxy,) = /Ot T (s)yds.

Thus, by (c), z € D(A) and Az = y, i.e., A is closed. For z € X,

1/n
D(A) > n/ T(s)xds — Cx (n — )
0

and hence R(C) C D(A). By (b) one sees that CA C AC, which implies that
A C C7YAC. Conversely, for + € D(C~'AC), let y = C~'ACx. Then, by the
closeness of C~! and (1.1.3),

/t T(s)yds = C~! /t T(s)ACzds =T (t)x — Cx (t = 0).
0 0
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Thus it follows from (c) that x € D(A), as desired.
(e) If {S(t)}s>0 is also a C-regularized semigroup generated by A, then by (b)
and (1.1.2),

di;T(t —s) /08 S(r)xdr=T(t —s) (S(S)a: — A-/o“J S(r)zdr)
=T(t—-s)Cx (zxeX,t=s20).

Integrating this from 0 to ¢ we obtain

C’f rdr—C/ S(r)yzdr (z€ X, t>0).

Since C is injective, T'(t) = S(t) for t = 0.

(f) Tt is clear that {CT(t)};>0 is a CC-regularized semigroup. Let A be its
generator. Since C € B(X), it easily follows that A C A. If z € D(A), then by
(1:1.3),

eT(0e —C0r= [ 6T (s) Auds = € / "T(s)Aads (¢ > 0).
0 0

Operating with C'~! on both sides and using (c) yield that z € D(A), as desired. O

The assertion (f) shows that the regularized semigroups generated by A can
possess different regularizing operators C'. So, in the application, it is remarkable
how to choose an optimal C; that is, the operator C' such that R(C) is as large as
possible.

Definition 1.1.4 A C-regularized semigroup {T'(t) }:+>0 is ezponentially bounded
if there exist constants M > 0, w € R such that ||T(t)| < Me** for t > 0. In this
case, we write (A,7(:)) € G(M,w,C) or A € G(M,w,C), where A is its generator.
Also, set G(w,C) = Up>0G(M,w,C) and G(C) = UyerG(w, O).

Let A be a linear operator on X. The C-resolvent set of A is pc(A) :=={A € C:
A — A is injective and R(C) C R(A — A)}, and the C-resolvent of A is Re (M, A) :=
(A — A)~1C for X € pc(A).

Here are some simple facts related with C-resolvents and the operator C~'AC.

Proposition 1.1.5 (a) If A is closed, then Rc(A\, A) € B(X) for A € pc(A).
Conversely, if Rc(\, A) € B(X) for some A\ € pc(A), then C~1AC is closed. More-
over, C~YAC is closed if A is closed.

(b) If Re(M A) = Re(NA) for some A € pc(A) N pe(A), then CTAC =
C~1AC. Moreover, CD(C~'AC) C R(Rc (A, A)) for A € pc(A).

(¢) CA C AC if and only if C(A — A)~' C Re(\, A) for A € pc(A). Moreover,

Ro(\A) = Re(u, A) = (= N)(u — A) " (A= A)~'C (1.1.4)
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for A, p € pc(A).

(d) If A is closed and CA C AC, then C(D(A)) = R(Rc(M, A)) if and only if
A € p(A). In particular, A= C~1AC if p(A) # 2.

(e) IfAC Aand A= C~'AC, then C~'AC = A if and only if C(D(A)) C D(A).

Proof (a) If A is closed, it is easy to verity that for A € pc(A), Ra(A, A)
is closed. Thus by the closed graph theorem, R (A, A) € B(X). Conversely, let
D(C7'AC) 3z, — x and C~'ACz, — y. Then Cz,, — Cx and

Cxy, = Ro(\, A)C (A — A)Cx, — Ro(\, A) Nz — ).

Consequently, Cz = Rc (X, A)(Az — y). It thus follows that x € D(C~1AC) and
C~'ACz =y, i.e., C71AC is closed. The rest follows easily by the definition of
closed operators.

(b) For z € D(C7'AC), let y = Az — C~1ACz. Then Cx = Rc(\ Ay =
Rc (A, A)y, which implies that y = Az — C~*ACz, and thus C~1AC C C-1AC.
The same argument gives the converse.

(c) This is easy to verify.

(d) From the assumption we deduce that R(A — A) = X if and only if (A —
A)C(D(A)) = R(C). This fact together with the closed graph theorem leads to the
desired assertion.

(e) Tt is clear that C~'AC C C~'AC = A. If z € D(A), then our assumption
implies that Cz € D(A) and ACz = ACz = CAxz € R(C). Thus, z € D(C~1AC).
The converse is easy from the definition of D(C~1AC). O

In the case that an extension of A generates a C-regularized semigroup, the
assertion (e) can be used to check whether C~1AC is the generator.

The basic properties of exponentially bounded regularized semigroups is as fol-
lows.

Proposition 1.1.6 Let (A, T(-)) € G(M,w,C). Then for ReA > w andn € N,
we have X € pc(A), R(C) C R((A— A)™) and
1 o0
A—-4)"Cz= ——; / " leMT()edt  (z € X). (1.1.5)
(n—1!Jo

Consequently,
(a) [[(A=A)™"C|| < M(ReA —w)™™ for ReA >w and n € N,
(b) Rc(-,A) : {A € C: ReX >w} — B(X) is analytic, and
(¢) imy— oo A(XA — A) "tz =z for z € R(O).

Proof For Re)\ > w, define Ry € B(X) by

oC
Ry =/ e MT(Hxdt (z € X).
0
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Then it follows from (1.1.1) that for x € X,
(A—=A) / e MT(t)adt = Cx — e T(n)z — Cz  (n — o0).
0

Since A is closed, we have Ryz € D(A) and (A — A)Ryxxz = Cx. Also, by Theorem
1.1.3(b), T(t)A € AT(t) for t > 0, and thus RyA € AR,. Combining these asser-
tions yields that A € p(A) and Ry = Rc (A, A). Now, by induction on n we obtain
R(C) € R(A—A)™) and (1.1.5). Moreover, a direct computation leads to (a), while
the consequences (b) and (c¢) follow from Theorem A.5, immediately. O

We now turn to regularized groups.

Definition 1.1.7 A strongly continuous family 7" : R — B(X) is called a
C-reqularized group if T(0) = C and T'(t+s)C = T'(t)T(s) for t, s € R. Its generator
A is defined by

Az = C Mim t~Y(T(t)x — Cx)

t—0

with maximal domain. Moreover, a C-regularized group {T'(t) }+cr is entire if it can
be extended to an entire B(X )-valued function {T'(t)}sec-

It is clear that the e’Az—regularized semigroup defined in Example 1.1.2(a) can be

extended to a e‘Az—regl_llarized group, and an entire e‘AZ—regularized group as well.
In general case, we have the following relationship between regularized semigroups

and regularized groups.

Theorem 1.1.8 The following are equivalent.

(a) A generates a C-reqularized group {T'(t)}ter-

(b) A and —A generate C-regularized semigroups {T1(t)}i>0 and {T_(t)}i>o0,
respectively.

Furthermore, T'(t) = T (t) and T(—t) =T_(t) fort > 0.

Proof (a) = (b). Set T(t) = T'(&t) (¢t > 0). Then both T% (¢) and T_(t) are
C-regularized semigroups. Suppose their generators are A, and A_, respectively.
By the definition of generators, A C A, . Conversely, if x € D(A. ), then for t € R,

%(T(t + R)z — T(8)z) = C“lT(t)%(TJr(h)x —Cz)
—T(t)Asz (h|0).

Thus %T(t)ac = T(t)A,z. Taking t = 0, one has ¢ € D(A), and so A, = A.

Similarly, A_ = —A.
(b) = (a). For z € X and ¢ > 0, it follows from Theorem 1.1.3(a) and (b) that

t t
%TJr(t)/o T (s)xzds = T+(t)(A/O T_(s)zds + T_(t)m> =T.(t)Cx.
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Integrating this we get

T, () /Ot T_(s)xds = /Ut T (s)Czds.

Operating with A on both sides and together with (1.1.2) we get T (£)T_ (t)z = C?z.
Similarly, T_(t)T(t)z = C?z. Define T'(£t) = T (t) for t > 0. Then, it is easy to
check that {T'(t)}icr is a C-regularized group. Suppose A is its generator. Then,
by the proof of (a)=(b), A = A. |

It is not hard to show that (a) is also equivalent to that A generates a C-
regularized semigroup {7 (t)}+>0 satisfying 0 € po2(T'(t)) (t > 0) and T(-)"'C?%zx €
c([0,), X) (z € X).

1.2 Generation theorems

This section is concerned with some generation theorems of exponentially bounded
regularized semigroups. We first characterize generators of C-regularized semigroups
in terms of Laplace transforms.

Theorem 1.2.1 Let M > 0, w € R. Then the following are equivalent.

(a) Ae G(M,w,C).

(b) A= C71AC, (w,0) C pc(A) and there exists a strongly continuous family
T :[0,00) — B(X) satisfying | T(t)|| < Me“* for t > 0 such that

Re(MN, A)x = /000 e MT(t)wdt (A >w, z € X). (1.2.1)

Furthermore, {T'(t)}+>0 is the C-reqularized semigroup generated by A.

Proof (a) = (b). This follows from Theorem 1.1.3(d) and Proposition 1.1.6.
(b) = (a). By (1.2.1) and Proposition 1.1.5(c), we have

o0 oo
f / e e T (t + 5)Crdsdt
o Jo

o0 t
= / e_(“‘_’\)t(Rc(/\, A)Cz — / e_}‘TT(T)C.’L‘dT)dt
0 0

=Ro(p, A)Rc(A, A)x
o0 o0
=/ / e Me M) (s)zdsdt (n> A >w, = € X).
o Jo

So, the uniqueness of Laplace transforms yields that T'(t + s)C = T'(t)T'(s) for
t,s > 0. To show that T'(0) = C, we note that T(0)(7(0) — C) = 0, and thus it
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suffices to prove the injectivity of 7(0). If T(0)x = 0, then T'(t)Cz = T(t)T'(0)z =0
By (1.2.1), Re(\,A)Cx = 0 for A > w. This implies that 2 = 0, as desired.
Hence {T'(t)}:>0 is a C-regularized semigroup. By Proposition 1.1.5(b), A is its
generator. O

If, in (b), the condition “A = C~'AC” is replaced by “CA C AC”, then (b)
implies that C~'AC € G(M,w, C). This note is also suitable to generation theorems
that appear later.

As an application of Theorem 1.2.1, we give the following.

Proposition 1.2.2  Let (A,T(-)) € G(M,w,C). Then for a > w, ((a —
A)~1.8() € G(M, (a —w)~L,C), where

—(a—A)™"C (t>0). (1.2.2)

In particular, A1 € G(C) if w < 0.

Proof For fixed a > w, let A = (a— A)~! and & = (a — w)~!. We first
show that A = C~1AC. Since A C C~1AC, it is easy to verify that AC o lAC.
Conversely, let z € D(C~1AC) and y = C~'ACz. Then z = ay — C"1ACy =
(a — A)y € D(A).

1 ~ 1

Next, let A > @. Then a — X > w. Since A — A = A(a— e A)(a—A)71, we see
that A\ — A is injective and R(C') € R(A — A). Hence (&, 00) C pc(A).

Finally, (1.1.5) implies that ||A"C|| < M&™ for n € N, and thus we may define
{S(t)}+>0 by (1.2.2). It is clear that {S(t }t>0 is strongly continuous, with ||S(t)| <

Me®t for t > 0. Since A = C~'AC and AC € B(X), it follows that A is closed, and
thus, by (1.2.2),

/ e MS( t)xdf—z / —e"\tA"C:rdt

0
_Z A AnCr = (A — A)"Cx
n=0
for A > @ and € X. Now, the claim follows from Theorem 1.2.1. O
It is well known that an important generation theorem for Cy-semigroups is the

Hille-Yosida-Phillips-Miyadera theorem. Now we establish an analogous result for
regularized semigroups.

Theorem 1.2.3 Let M > 0, w € R. Then the following statements are
equivalent.
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(a) A =C1AC, (w,00) C pc(A), R(C) € R((A — A)") and
[A—w)"(A—A)™"C| <M (A>w, neN). (1.2.3)

(b) (A, T(-)) € G(Rc(a, A)) for some a € pc(A) and {e=“*T(t)}4>0 is Lipschitz
continuous for some @ € R.

If, in addition, D(A) is dense in X, then (a) is equivalent to

(c) Ae G(M,w,C).

Proof (a) = (b). It is clear that for A > w and z € X,

oo

F) =3 (A=p)"(A\ =A™ 'Ca

n=0

defines an analytic function from {u € C: |\ — pu| < A — w} into X. Since, by
Proposition 1.1.5(a), A is closed, we obtain that Ro(u, A)x = f(u) for p € pc(A).
This implies that

i (n) n —n—=1

WRC(/\’ Az = [ (p)|p=r = (=1)"n!l(A - A) Cz
for A > w, © € X. Thus, by (1.2.3) and Theorem A.3, there exists {S(t) }+>0 C B(X)
such that S(0) =0, {e “*S(t)}+>0 is Lipschitz continuous, and

Ro(M\, A)z = /\/ e MS(t)xdt (N >w, z € X). (1.2.4)
0

Let a > w and € = Re(a,A). Then C~'AC = C~'AC = A and, by (1.1.4),
(w,0) C ps(A). Define T'(t) € B(X) (t > 0) by

t
T(t)z = e Cx — S(t)x — a/ =98 (s)zds (x € X).
0

Thus {e *T'(t)}:>0 is Lipschitz continuous. Also, by (1.1.4) and (1.2.3), it is not
hard to verify that
00

Rs(\, Az = / e MT(txdt (A >a, € X),
0

and thus (A,7T()) € G(C) by Theorem 1.2.1.
(b) = (a). We first note that C~'AC = C~'AC = A and, by (1.1.4) (with
A =a), (&,00) C pc(A). Define S(t) € B(X) (t = 0) by

S(t)r = Re(a, A)x — T(t)x — a/t T(s)zds (x € X).
0
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Then S(0) = 0 and {e “!S(¢)}+>0 is Lipschitz continuous, where we choose w >
max{w,0}. Also, a simple calculation leads to (1.2.4), and thus by induction,

(/\—A)‘"Cx=,\/ / e~ A btHn) (S(4 4 g )
0 0
7 PP Y S

forx € X, A > w and n € N. Combining these assertions and noting that A —w < A,
we obtain (1.2.3).
(a) = (¢). For 2 € D(A) and A > max{w, 0}, by (1.2.4),

1
A)r=—
Ro(A A)x 3

0 i
=3 / e"“(tC:L‘-i— / S(s)A:cds)dt,
0 0

and thus, by the uniqueness of Laplace transforms,

Czx + %Rc(/\, A)Ax

t
S(t)x =tCx+ | S(s)Azds (t > 0).
0
Since D(A) = X and {e~“'S () }+>0 is Lipschitz continuous (with Lipschitz constant
M), T(t) := S'(t) (t = 0) is a strongly continuous family in B(X), with ||T'(¢)| <
Me*! for t > 0. The claim now follows from Theorem 1.2.1.
(c) = (a). This follows easily from Theorem 1.1.3(d) and Proposition 1.1.6. O

From the proof above we see that the constants M, w in (a) are consistent with
that in (c), while the relationship between w and @ is as follows: (a) implies that
(b) is true for any @ > w; (b) implies that (a) is true for any w > max{®, 0}.

We now consider a special class of regularized semigroups.

Definition 1.2.4 A C-regularized semigroup {7 (t)},>0 is contractive if
|T(t)z| < ||Cz| for z € X and t > 0.

Let Y be a subspace of X and let A be a linear operator on X. We denote by
Ay the part of A in Y, ie., Ay C A with maximal domain in Y.

A question arisen immediately from the definition is: If A generates a contrac-
tion C-regularized semigroup, does Am generates a contraction Cy-semigroup on

R(C)? We will give a counterexample in the next section. Here is a conditional
result.

Theorem 1.2.5 Let A= C~1AC, C(D(A)) = R(C) and D(A) C R(a — A)
for some a > 0. Then the following are equivalent.

(a) A generates a contraction C-regularized semigroup on X .

(b) (0,00) C pc(A) and A|Rc (A, A)z| < ||Cx|| for A >0 and z € X.

(c) Am generates a contraction Cy-semigroup on TC)



