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Preface

The purpose of this book is to present typical methods (including rescaling
methods) for the examination of the behavior of solutions of nonlinear partial
differential equations of diffusion type. For instance, we examine such equa-
tions by analyzing special so-called self-similar solutions. We are in particular
interested in equations describing various phenomena such as the Navier—
Stokes equations. The rescaling method described here can also be interpreted
as a renormalization group method, which represents a strong tool in the
asymptotic analysis of solutions of nonlinear partial differential equations.
Although such asymptotic analysis is used formally in various disciplines, not
seldom there is a lack of a rigorous mathematical treatment. The intention
of this monograph is to fill this gap. We intend to develop a rigorous mathe-
matical foundation of such a formal asymptotic analysis related to self-similar
solutions. A self-similar solution is, roughly speaking, a solution invariant
under a scaling transformation that does not change the equation. For several
typical equations we shall give mathematical proofs that certain self-similar
solutions asymptotically approximate the typical behavior of a wide class of
solutions.

Since nonlinear partial differential equations are used not only in mathe-
matics but also in various fields of science and technology, there is a huge
variety of approaches. Moreover, even the attempt to cover only a few typical
fields and methods requires many pages of explanations and collateral tools
so that the approaches are self-contained and accessible to a large audience.
It is not our intention to survey many topics of nonlinear partial differential
equations. Our aim in this book is to explain some asymptotic methods by
studying typical examples.

Historically, partial differential equations were introduced soon after the
notion of differentiation and integration was settled, with the purpose to model
dynamical behavior of the motion of bodies such as a string or a membrane.
A partial differential equation (PDE) is an equation describing a functional
relation of a set of unknowns and their derivatives. Here the unknowns depend
in general on several independent variables such as time and space. If the
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unknowns depend only on one variable, the equation is called an ordinary
differential equation (ODE). Thus, compared with ODEs there is a much
larger diversity of problems modeled by PDEs. In fact, various PDEs are
proposed to model phenomena not only in physics, for example in mechan-
ics, electromagnetics, and thermodynamics, but also in various other fields
of science and technology such as social sciences and finance. On the other
hand, PDEs do not only describe real-world phenomena, but also play an
important role in the description of mathematical objects such as those, for
example, in differential geometry and complex analysis. If a PDE is linear
with respect to the unknowns and their derivatives, it is called a linear partial
differential equation. Typical examples of linear PDEs are the heat equation,
the Poisson equation, and the Laplace equation in electromagnetics. However,
in the modeling of certain phenomena there appear several key PDEs that are
not linear. PDEs of this type are called nonlinear partial differential equations.
A typical example is given by the Navier—Stokes equations, which represent
the fundamental equations of hydrodynamics. There is a huge variety of non-
linear PDEs, and so far it seems impossible to discuss fundamental problems
in a unified way. Typical problems in mathematical analysis include a solvabi-
lity problem—existence of solutions of a PDE—under suitable supplemental
conditions such as initial or boundary conditions. For linear PDEs such prob-
lems can be discussed somewhat in a unified way. This, however, seems to be
hopeless for the nonlinear case, since each nonlinear PDE has a special struc-
ture. So, we do not intend to establish a unified theory at the present stage.
Rather we mostly study a specific class of nonlinear PDEs having a similar
structure. (Note that the set of linear PDEs is a special class of PDEs.) Even
for fundamental problems such as solvability, necessary prerequisites depend
upon equations. From the applied point of view other problems such as pro-
file and behavior of solutions, are also very important. Indeed, researchers in
applied fields often conjecture the behavior of solutions by studying special
solutions. However, there is a tendency among mathematical books treating
PDEs in a rigorous way to spend many pages on solvability problems, and it
is often difficult to explain the behavior of solutions.

The aim of this book is to study the behavior of solutions in a rigorous way
by discussing typical examples without even assuming knowledge of functional
analysis. For this purpose, the structure of this book differs essentially from
the setup of usual mathematical textbooks. In the conventional style, authors
explain fundamental universal theory for PDE analysis, such as elementary
functional analysis, and discuss PDEs in that framework. This is a smart
way to encode a lot of mathematical information in a small number of pages,
which is also very efficient. In this book, however, we pursue a different way.
We study directly the behavior of solutions of particular equations without
preparing the fundamental theory. Instead, we discuss fundamental tools used
in the analysis of these PDEs in the second part of this book. We hope that
the reader will learn to deal with tools such as calculus inequalities during the
study of PDEs. This more direct way should give students a strong motivation
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for the study of such fundamental tools and an idea of their usefulness for
applications.

The book at hand consists of two parts. Part I includes Chapters 1, 2, and
3. Part II includes Chapters 4, 5, 6, and 7. In Part I we present a way to study
the behavior of solutions of nonlinear PDEs of diffusion type using self-similar
solutions. In Chapter 1 we show as a preliminary result by two methods that
the large-time behavior of solutions of the heat equation is asymptotically self-
similar. The first method relates to a representation formula of the solution.
This argument is simple; however, it is restrictively applicable to nonlinear
PDEs. The second method replaces the problem by the task of showing the
convergence of a family of functions of rescaled solutions. This argument,
however, applies to a wide range of problems.

In fact, in Chapter 2 we analyze in detail by the second method the two-
dimensional vorticity equations (obtained from the Navier—Stokes equations).
We shall prove that the vorticity, which is the solution of the vorticity equa-
tions, is asymptotically self-similar as time tends to infinity. Moreover, its
behavior is proportional to the behavior of the Gauss kernel (also called the
Gaussian vortex), provided that the total circulation is small. We present
a proof that is more transparent than the ones given in the previous litera-
ture and that is based on an improvement of the fundamental L?— L! estimate
(Section 2.3) for the heat equation with transport term. We also complete the
proof by giving an estimate (Section 2.5.2) for the family of rescaled functions
(which is missing in the literature). Our purpose is to get a sharp result with
a method as elementary as possible. For example, the estimates on the deriva-
tives of the vorticity (Section 2.4.2) are new in the sense that they include the
cases p = 1 and p = 0o. The proof is elementary in the sense that it does not
use a complicated function space or interpolation of spaces.

As an application of the asymptotic behavior of the vorticity we discuss
in Section 2.6 the formation of the Burgers vortex in three dimensions. A few
years ago the convergence to the Gaussian vortex was proved without assum-
ing that the total circulation is small. We include this beautiful result, which
is based on relative entropy, in Section 2.8. In order to make this book self-
contained we also give a proof of all key statements (except for the lemma
in Section 2.5.2), including those in Part II by admitting the unique solvabil-
ity of the vorticity equations as well as the solvability of the heat equation
with transport term. We hope that the reader, while following the proofs, will
learn about the significance of the calculus inequalities, provided in Chapter 6,
in the analysis of these individual PDEs. Almost all inequalities invoked in
Chapters 1 and 2 are proved in Part II, unless their proof is given in Chapters 1
and 2 already.

In Chapter 3 we first present a typical result of large-time asymptotic
behavior of solutions for the porous medium equation, however, without giving
a proof. Then, we present a method to analyze asymptotic behavior of solu-
tions for the mean curvature flow equations near a singularity. These equations
are often used to model the motion of phase boundaries such as antiphase grain
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boundaries. We show that the key monotonicity formula is also valid for the
harmonic map flow equation and the semilinear heat equation. Furthermore,
we give an elementary proof (Section 3.2.3) of the uniqueness of self-similar
solutions of the mean curvature flow equations for axisymmetric surfaces.
Finally, as an example of non-diffusion-type equations we mention a non-
linear Schrodinger equation and a generalized KdV equation. Also for these
equations we present an existence result of self-similar solutions describing
large-time behavior and behavior near a singularity, respectively. Here we
just state the results without giving a proof. So, Chapter 3 is a collection of
several different topics, while Chapter 2 is written toward one explicit goal.

In Part II we give explicit proofs for various important functional analytic
statements invoked in Part I. In Chapter 4 we prove decay estimates for the
heat equation and uniqueness of the solution, if the initial value is given by
the Dirac delta distribution. We review several basic notions, such as the
fundamental solution for the heat equation with transport term, and prove
its unique existence. For the reader’s convenience we give also a proof of
integration by parts in unbounded multidimensional domains. In Chapter 5
we give a variant of the Ascoli-Arzela theorem, which is a fundamental
compactness result for families of functions. This variant applies also to
families defined on a domain that is not necessarily compact. In Chapter 6 we
prove several important inequalities. Except for the boundedness of singular
integral operators, we present proofs based on estimates for the solution of the
heat equation. Compared to other existing textbooks this approach is quite
unusual. From these interesting applications we learn that estimates for the
solution of the heat equation can be important in various situations, although
they are rather elementary. Our intention is not to give the shortest proof.
We rather try to explain variants of the proofs. In Chapter 7, we summarize
basic knowledge on integration theory and on bounded linear operators.

The inequalities in Chapter 6 are very important in the analysis of
nonlinear PDEs in general, i.e., also for PDEs not treated in this book.
In mathematical analysis it is often crucial how to estimate various quantities.
These inequalities are presented rather in textbooks on real analysis than in
textbooks on PDEs. Even though these inequalities are classical results, we
included their proofs in order to make this book self-contained. We often
mention unsolved problems at the present stage in italics in order to animate
further research. (In fact, a problem raised in the Japanese version published
in 1999 has been solved.) In the approaches presented in Part I and Part II we
usually proceed as follows: first we state what we want to show and discuss
applications; then we give the technical details of the proof. We hope that
the reader will be able to read results and proofs with a clear view why the
corresponding problems are studied, although some of them look just techni-
cal. We also remark that the range of the topics treated in this book is too
broad to give a complete list of references. We therefore just tried to give a list
of typical references. However, we included “notes and comments” or “research
history” in some chapters, which should help the reader to find further related
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literature. To shorten the description we often refer to a theorem, proposition,
lemma, corollary, remark, or definition in a particular subsection just by its
subsection number. For example, instead of writing “the theorem in §2.2.1”
we often write “Theorem 2.2.1” if no confusion seems likely.

It is widely known that nonlinear analysis is significant for science and
technology. As a very attractive topic, the analysis of nonlinear PDEs can
be regarded as an important subfield of nonlinear analysis. However, to
understand nonlinear PDEs in a rigorous mathematical way, it is often
believed that a wide-ranging knowledge including Lebesgue integration theory,
functional analysis, theory of distributions, real analysis, and the theory of
ODEs is necessary. Of course, if one is familiar with these subjects, the
description of results can be simplified and their treatment can be unified in
an elegant way (in contrast to the approach presented in this book, where we
tried not to use these theories). However, some readers might be interested in
studying properties of solutions of nonlinear PDEs as soon as possible (before
mastering these prerequisites). This book is written mainly for such readers.
The layout is chosen in a way that the reader will gain necessary analytic
knowledge and intuition naturally during the study of the behavior of solu-
tions of PDEs. For this purpose several elementary facts such as differentiation
under the integral sign are elaborately explained in Part II. As a consequence
this requires a great deal of text on linear PDEs (although this is also useful
in analyzing nonlinear PDESs). Very nonlinear structure is discussed mainly in
Chapter 3.

The prerequisite to read Part I is only calculus including integration by
parts in higher dimensions. If one reads Part II in a logically complete way,
an elementary part of Lebesgue integration theory is necessary. Our hope is
that the reader will see how mathematical theory taught in freshman and
sophomore courses represents the basis for various theories with beautiful
applications to PDEs.

For the reader who is interested in large-time asymptotic behavior of solu-
tions of the heat and vorticity equations we suggest to read Sections 1.1, 2.1,
2.2, 2.6, 2.7.1, 2.8 first. For the reader who is interested in various applica-
tions of self-similar solutions we suggest to read Section 2.7.3 and Chapter 3.
We hope these sections are useful to readers who are also interested in various
other disciplines than mathematics such as, for instance, hydrodynamics and
engineering.

The authors are grateful to Professor Haim Brezis for inviting them to
write this book and for his patience.

The present book is based on the first two authors’ book Hisenkei Henbibun
Hoteishiki published in Japanese by Kyoritsu Shuppan in 1999. The book is
not just a simple translation of the Japanese version. We expanded and revised
several parts. However, the structure and the spirit are similar to the Japanese
version.

The authors are grateful to Professor Tohru Ozawa and Professor Masao
Yamazaki for valuable comments on the Japanese edition. They are also
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grateful to Professor Toshio Mikami and Professor Masayoshi Takeda for
informative remarks on references of Section 6.1.5 of the Japanese edition.
Furthermore, they are grateful to Professor Hisashi Naito and Ms. Yumiko
Naito for their help on the translation into English.

The authors are grateful to Dr. Yasunori Maekawa and to Dr. Yukihiro Seki
for their help in revising Chapter 2 and Chapter 3, respectively.
They are grateful to Professor Marco Cannone, Professor Dongho Chae,
Professor Yuki Naito, Professor Takayoshi Ogawa, Professor Gieri Simonett,
Professor Michael Struwe, and Professor Fred Weissler for informative remarks.
Finally, the authors would like to thank all colleagues, students, and readers
of the Japanese edition who contributed with useful hints and comments to
the success of this book.

March 2010 Mi-Ho Giga
Yoshikazu Giga
Jirgen Saal
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