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Preface

Proteins are endlessly fascinating. They carry out almost all the catalytic
functions in the cell, as well as directing and forming most of the structural
framework. They catalyze reactions many orders of magnitude faster than any
system that humans can devise under comparable conditions. Proteins are
also much larger than most human-designed catalysts. They make many inter-
actions of widely varying strength and duration. Crucial to any understanding
of protein function is their structure: although many of the principles govern-
ing how proteins work were understood many years ago, it is not until we
have the structural details that we can really appreciate exactly what the pro-
teins are doing. This is a major reason why we don't understand membrane
proteins as well as we do globular proteins. However, the structure is merely
the detail that enables us to reach toward the concepts that really explain
how proteins work. I have therefore endeavored to look beyond the structural
detail to understand the underlying principles.

This textbook grew out of my courses for intermediate and advanced under-
graduates, and is inspired by the idea that proteins are a functional part of liv-
ing and evolving systems. They have a certain form and function because it
works, not necessarily as the most perfect solution to the biological problem,
but certainly as a viable and successful solution. Advanced undergraduate and
graduate students, as well as practitioners, interested in proteins should find
the book useful. A basic foundation in chemistry and biology, as supplied by
introductory undergraduate courses in biochemistry, should suffice. Students
may have a background in chemistry, biology or physics, but I have tried to
write the text so that it is accessible to all.

The book is written in a style that I like to read. This means the text is discur-
sive; occasionally it goes off at a tangent; it has analogies and examples liber-
ally scattered around; it simplifies systems as far as possible in an attempt to
see the forest for the trees; and it places more emphasis on principles than on
the experiments that were used to derive the principles.

There is considerable discussion of the role of evolution in tinkering with pro-
teins to create something with a desired function. I am particularly interested
in how proteins solve ‘difficult’ biological problems, such as catalysis, move-
ment, and signaling. In the same way that you cannot really understand a
foreign country without having some idea of its history, I believe that you can-
not understand proteins unless you have some idea of how they got to their
present form. The use of everyday analogies and emphasis of the physical
environment around the protein enable the reader to understand proteins as
well as merely know the facts about them.

Quantitative calculations are used to understand how proteins work. I strongly
believe that the field of biochemistry in general, and protein science in par-
ticular, will need to place more emphasis on quantitative measurements as
they mature. A holistic view—integrating structural, chemical, and biological
data to try to understand how proteins help the cell to function properly—is
key to this text. We are moving into a new era of biological science, where we
have a good idea of many of the pieces, and we are starting to see how the
pieces work together to achieve a functional whole (the idea behind Systems
Biology). This book is an attempt to do exactly that.

I have been occupied for some
time with the study of the most
essential substances of the
animal kingdom: fibrin, albumin
and gelatin. I conclude that

the organic substance which is
present in all constituents of the
animal body, also as we shall
soon see in the plant kingdom,
could be named protein from
mpwTews [proteios], primarius,
which has the composition
C400H620N 1000 120. .

Gerhardus Johannes Mulder
(1802-1880)
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PREFACE

I do not attempt to be comprehensive in the coverage of proteins. There is little
coverage of medical aspects of proteins, though they are certainly described
where relevant, as in signaling. I have often skipped over the experimental
evidence for many of the facts presented, because I do not want to obscure the
principles of how proteins work by inclusion of too much experimental detail.

Chapters 1-4 and 6 present the physical constraints that have resulted in pro-
teins looking and working the way they do. These limitations include the struc-
tures and properties of amino acids and the forces that hold proteins together,
which are discussed in Chapter 1, along with a detailed discussion of the way
evolution shapes proteins. Chapter 2 discusses the domain, the fundamental
structural and evolutionary building block of proteins, while Chapter 3 con-
siders how domains associate together into oligomeric proteins; it also dis-
cusses consequences of oligomerization such as allostery and cooperativity.
Chapter 4 covers an important topic that is not often discussed in textbooks,
namely the cellular environment and how this influences proteins. It describes
the crowded environment of the cell, how proteins bind rapidly and yet spe-
cifically to their targets, and natively unstructured proteins, as well as post-
translational modifications and protein folding. Finally, Chapter 6 discusses
the developing area of internal mobility within proteins.

The second half of the book, Chapters 5 and 7-10, covers various biologi-
cal functions of proteins, and considers how they carry out these functions,
and how their structure enables them to do so. These are enzyme catalysis in
Chapter 5, movement and translocation in Chapter 7, signaling in Chapter 8,
regulation (by the formation of complexes) in Chapter 9, and coordination of
sequential reactions by multi-enzyme complexes in Chapter 10. Additionally,
Chapter 9 looks at the results emerging from high-throughput technology.
Finally, Chapter 11 discusses the techniques used in studying proteins, both
experimental and theoretical.

The main text is augmented with boxes referred to by numbered asterisks (*)
that provide more details on select topics, brief biographies of prominent sci-
entists, and pedagogical analogies for further elucidation of concepts. There is
also a glossary containing definitions to words that appear in bold throughout
the main text.

Online Resources

Accessible from www.garlandscience.com, the Student and Instructor Re-
sources websites provide learning and teaching tools created for How Proteins
Work.The Student Resources Site is open to everyone, and users have the
option to register in order to use book-marking and note-taking tools. The
Instructor’s Resources Site requires registration and access is available to
instructors who have assigned the book to their course. To access the Instructor
Resource Site please contact your local sales representative or email science@
garland.com. Below is an overview of the resources available for this book. On
the website, the resources may be browsed by individual chapters and there is
a search engine. You can also access the resources available for other Garland
Science titles.

For Students

Animations and Videos

The animations and videos dynamically illustrate important concepts from the
book, and make many of the more difficult topics accessible.

Flashcards

Each chapter contains a set of flashcards, built into the website, that allow stu-
dents to review key terms from the text.
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Glossary

The complete glossary from the book is available on the website and can be
searched and browsed as a whole or sorted by chapter.

Hints

The hints provide strategies and clues for solving some of the more difficult
end-of-chapter problems.

Solutions to Problems
Solutions to the odd-numbered problems are provided for self-testing.

For Instructors

Figures

The images from the book are available in two convenient formats:
PowerPoint® and JPEG. They have been optimized for display on a computer.
Figures are searchable by figure number, figure name, or by keywords used in
the figure legend from the book.

Animations and Videos

The animations and videos that are available to students are also available
on the Instructor’s website in two formats. The WMV formatted movies are
created for instructors who wish to use the movies in PowerPoint presenta-
tions on Windows® computers; the QuickTime formatted movies are for use in
PowerPoint for Apple computers or Keynote® presentations. The movies can
easily be downloaded to your computer using the “download” button on the
movie preview page.

Power Point Presentations

The PowerPoint presentations contain the figures and micrographs from the
book. There is one presentation for each chapter.

Solutions Manual
A complete solutions manual is provided for all problems in the text.

Acknowledgments

Ineed to thank the many people who have helped in one way or another. These
include my supervisors and mentors Dudley Williams and Kurt Wiithrich, as
well as colleagues who have provided much needed insight. For advice and
corrections: Pete Artymiuk and Per Bullough. For suggestions particularly on
the problems: Abaigael Keegan, Hugh Dannatt, Rebecca Hill, Vicki Kent, Tacita
Nye and Muhammed Qureshi. And of course the production team at Garland
Science, particularly Summers Scholl who has nurtured the book through its
gestation; Emma Jeffcock, who has ably managed the production process;
Matt McClements, who has turned my sketches into awesome images; and
Bruce Goatly, whose spot-on comments and corrections were appreciated.

Mike Williamson
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CHAPTER 1
Protein Structure and Evolution

Structural biology has had an enormous influence on biochemistry in general,
and on the study of proteins in particular. It can almost be said that unless we
know a protein’s three-dimensional structure we cannot understand how it
functions. However, when the crystallographer John Kendrew determined the
structure of the first protein to be described in detail (myoglobin, in 1958), the
most striking feature was its irregularity and complexity (or, as Max Perutz
wrote, a “hideous and visceral-looking object"—Figure 1.1 [2]). It soon became
clear that proteins require this level of complexity to bind ligands and cata-
lyze reactions specifically. But as soon as we start looking in detail at pro-
teins, we see that there are regular patterns to the way in which proteins fold
up, patterns that are determined by the underlying structures of amino acids
and by the forces that dictate how they pack together. When we look at the
human body, we can identify a hierarchy of structural and functional units,
each dependent on the next: limbs, organs, cells, and cellular components.
The same is true of proteins—each level of structure (quaternary, tertiary, sec-
ondary, and primary) depends on the one below.

Even more importantly, the structure and function of proteins are a product of
evolution. This is again true of the human body: we cannot hope to understand
its functions, malfunctions, and development without understanding some-
thing about the evolutionary processes that shaped it. This is why an evolu-
tionary viewpoint pervades this book, and why a considerable part of the first
chapter has been set aside to consider the implications of evolution.

Chapter 1 lays down a framework and sets the scene for the rest of the book. It
is, however, far from being just an introduction, and contains some advanced
material.

1.1 STRUCTURES OF AMINO ACIDS AND PEPTIDES

1.1.1 Proteins are composed of amino acids

There are 20 common amino acids coded for by DNA and translated into pro-
teins from mRNA on ribosomes, as listed in Table 1.1. These are all L-amino
acids (*1.1). In addition, selenocysteine is coded for by UGA, the umber codon,
which is normally a termination codon; an extra nucleotide sequence slightly
downstream in the mRNA directs the cell to insert selenocysteine here. Bacteria
can also produce D-amino acids and unusual amino acids by using nonribos-
omal synthesis, which does not concern us here but is discussed further in
Chapter 10. The amino acids are known both by their three-letter abbrevia-
tions and also by one-letter codes, which match the three-letter name where
possible (see Table 1.1).

An amino acid consists of a carboxylic acid, which is attached to a carbon
atom called the a-carbon because it is adjacent to the carboxylate. In turn, the
a-carbon is attached to an amine (hence the name amino acid). In the small-
est amino acid, glycine, this is all there is. In all the others, the a-carbon is
attached to a B-carbon, which in turn is often attached to further atoms. These
are given succeeding letters from the Greek alphabet: v, §, etc. The carbonyl,
Ca and amine are called the backbone (*1.3), the other atoms being the side
chain (*1.4).

The basic laws of physics can
usually be expressed in exact
mathematical form, and they are
probably the same throughout
the universe. The “laws” of
biology, by contrast, are often
only broad generalizations, since
they describe rather elaborate
chemical mechanisms that
natural selection has evolved
over billions of years.

Francis Crick (1988), [1]

FIGURE 1.1

The first view of a protein structure was
Kendrew’s “hideous and visceral-looking
object”: the low-resolution crystal structure
of myoglobin, obtained in 1958. At this
resolution it is only possible to see the
course of the peptide chain, much of
which is in the form of « helices. Although
the internal structure of an « helix is
regular, the rest of the protein (the tertiary
structure) is strikingly irregular. The darker
region near the top is the heme, which
should of course be almost completely flat;
in higher-resolution structures it is indeed
flat. (From J.C. Kendrew et al., Nature
181:662-666, 1958. With permission from
Macmillan Publishers Ltd.)
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TABLE 1.1 The 20 common amino acids plus selenocysteine

Alanine

Arginine

Asparagine?®
Aspartic acid®

Cystine/cysteine

Phenylalanine

Glutamine?
Glutamic acid?
Glycine
Histidine

Isoleucine

Leucine

Lysine
Methionine

Proline

Serine
Threonine
Tryptophan
Tyrosine
Valine

Selenocysteine

Three-letter
code

Ala
Arg

Asn
Asp
Cys

Phe

Gln
Glu
Gly
His
Ile

Leu

Lys
Met

Pro

Ser
Thr
Trp

Tyr

Val

One-letter
code®

e Y W )

Side-chain structure®

CHs

11_'/\/\= “NH,
CH,-CONH,
CH,-COy”

CH3-S-; CH,-SH

O

CH,-CH,-CONH;
CH,-CH,-COy”
H

N
—
sy
|.|_')\/
LL'/Y
CH,-CH,-CH,-CHp-NH3
CHy-CH-S-CH3

oy
eI Foa

CH,-OH
CH(OH)-CH3

Hf_(/u\/©

/
H

m’@‘”
e

CHy-SeH

Range
of pK;, in
proteins

125

3.9 2.0-6.7
83 2.9-10.5
3.2 2.0-6.7
6.0 23-92
10.5 6.0

14.0

15.0

97 6.1

Comments

Hydrophobic, small
Hydrophobic in middle, basic
atend

Polar

Acidic

Hydrophobic

Reduced (SH) is called cysteine;
oxidized (S-9) is called cystine.

Hydrophobic, aromatic

Polar
Acidic
Hydrophobic

Basic, aromatic
Hydrophobic
Hydrophobic

Basic
Hydrophobic
Hydrophobic and hydrophilicd

Polar

Polar

Hydrophobic, aromatic
Aromatic

Hydrophobic

Hydrophobic®

Amino acids have the common structure *H3N-CH(R)-CO,", where R is the side chain and the rest is the backbone. The table gives the structure of R.
4In addition, Asp and Asn are collectively called Asx with one-letter code B, and Glu and GIn are called GIx with code Z.

bThe one-letter code for any of the 20 amino acids is usually X. The one-letter code matches the first letter of the amino acid where this is unique (C, H, |, M, S,

V). Where more than one amino acid starts with the same letter, the code is assigned to the more common amino acid (A, G, L, P, T). The rest are phonetic where
possible (Fenylalanine, asparagiNe, aRginine, Qtamine, tYrosine). Tryptophan has a double ring (double-u or W), and the others have a letter somewhere near the
letter that the amino acid starts with (Asp D, Glu E, Lys K).

The backbone CH carbon is the alpha carbon Ca, and its attached proton is Ha. The side-chain atoms are given succeeding letters from the Greek alphabet:

B (beta), y (gamma), 3 (delta), € (epsilon), { (zeta), 1 (eta). In computer files such as coordinate files, these labels are given in capital letters: A, B, G, D, E, Z, H. Where
there is more than one heavy atom the same distance out from Ca, they are numbered 1 and 2; so for example the two methyl groups of a leucine are called C31
and (2. The dihedral angles along the side chain are called y; (chi-1, pronounced kai, the angle formed by the four atoms N, Ca, CB8, and Cy), x2, and so on.

9The entire amino acid is drawn here. Strictly, proline is not an amino acid but an imino acid because it has an NH group, not an NH; group. As discussed in
Chapter 4, the ring is hydrophobic but the main chain is unusually hydrophilic, making polyproline, for example, soluble in water.

Selenocysteine is not normally counted as one of the standard amino acids (see the text).



*1.1 L-Amino acid

An L-amino acid is an a-amino acid with L chirality at the o carbon
(Figure 1.1.1). The prefix L stands for levo and means that the related
compound L-glyceraldehyde rotates polarized light to the left.

FIGURE 1.1.1
The Ca carbon of amino acids is chiral. This figure shows an L-amino
acid.

*1.2 Chirality

Any molecule whose reflection in a mirror cannot be superimposed is
asymmetric or chiral. The two mirror images are called enantiomers,
or more generally but less specifically isomers. Their physical and
chemical properties are identical, except that one rotates plane-
polarized light to the left and the other rotates it to the right. The
most common origin of chirality is carbon atoms that have four
nonidentical groups attached to them: for example Ca carbons in
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A D-amino acid (Figure 1.1.2) has the opposite chirality (*1.2):
D-glyceraldehyde rotates polarized light to the right (dextro).

o 'H +
0.C. .- NH
"C o 3

2

FIGURE 1.1.2
A D-amino acid.

amino acids (see Figure 1.1.1). [The exception is glycine, which is not
chiral because the Ca has two hydrogens attached and is therefore
symmetrical.] The two enantiomers are called L and D. The formal
definition of L is as follows: view the Ca with the Ha toward you. If
C=0, side chain, N go in a clockwise direction, the amino acid is L,
whereas if they are anticlockwise it is D. This nomenclature is related
to the organic chemistry (Cahn-Ingold-Prelog) definitions of S and R:
all L-amino acids except cystine are also S.

The 20 amino acids are conveniently divided into groups. Four (Asp, Glu, Arg,
and Lys) carry a charge at neutral pH: two are positive (basic: Arg and Lys)
and two negative (acidic: Asp and Glu). Seven are hydrophobic (eight if we
include glycine), and the remaining eight have polar groups. Of these, his-
tidine is noteworthy because its pKj is close to 7. Therefore in a protein at
neutral pH it can be either protonated or not, depending on its local environ-
ment. Cysteine is also “special” because the side chain is easily oxidized to
form the S-S disulfide form, where it is known as cystine. In an extracellular
environment, including in the blood, cysteine is usually oxidized to cystine.
However, the intracellular environment is normally sufficiently reducing that
the dominant form is cysteine. Therefore one commonly finds extracellular
proteins that are stabilized by disulfide bridges, whereas disulfides are not usu-
ally found in intracellular proteins. (In intracellular proteins, a similar stabiliz-
ing role is played by zinc, which binds to a combination of four cysteine or
histidine side chains, forming a variety of “zinc finger” structures.) Cysteine
also has a fairly low pK;, making it a good nucleophile (*5.7). 1t is therefore
often found in enzyme active sites.

*1.4 Side chain
The side chain is those parts of a protein that are not the backbone (Figure 1.4.1). Each amino
acid except glycine has a side chain (Table 1.1).

R H

, 0

# | Il

\N/c\c/ N\c“/c\

| I |
0

FIGURE 1.4.1
R2 Protein side chains.

*1.3 Backbone

This is generally taken to mean the N,
Ca and carbonyl CO groups in a protein
(Figure 1.3.1).

R, H 0
e
e & F?*é -~ {: ’%“uﬁ,‘ﬁz ’,,.aw““” gﬁg "‘*%,% {'.(f«“ { ~
‘ Il |
H 0 Rz
FIGURE 1.3.1

A protein backbone (green).



