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Introduction and Dedication

This book is dedicated to Paul Erdds, the greatest mathematician I
have ever known, whom it has been my rare privilege to consider
colleague, collaborator, and dear friend.

I like to think that Erdds, whose mathematics embodied the princi-
ples which have impressed themselves upon me as defining the true
character of mathematics, would have appreciated this little book
and heartily endorsed its philosophy. This book proffers the thesis
that mathematics is actually an easy subject and many of the famous
problems, even those in number theory itself, which have famously
difficult solutions, can be resolved in simple and more direct terms.

There is no doubt a certain presumptuousness in this claim. The
great mathematicians of yesteryear, those working in number the-
ory and related fields, did not necessarily strive to effect the simple
solution. They may have felt that the status and importance of mathe-
matics as an intellectual discipline entailed, perhaps indeed required,
a weighty solution. Gauss was certainly a wordy master and Euler
another. They belonged to a tradition that undoubtedly revered math-
ematics, but as a discipline at some considerable remove from the
commonplace. In keeping with a more democratic concept of intelli-
gence itself, contemporary mathematics diverges from this somewhat
elitist view. The simple approach implies a mathematics generally
available even to those who have not been favored with the natural
endowments, nor the careful cultivation of an Euler or Gauss.

vii
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Such an attitude might prove an effective antidote to a generally
declining interest in pure mathematics. But it is not so much as incen-
tive that we proffer what might best be called “the fun and games”
approach to mathematics, but as a revelation of its true nature. The
insistence on simplicity asserts a mathematics that is both “magi-
cal” and coherent. The solution that strives to master these qualities
restores to mathematics that element of adventure that has always
supplied its peculiar excitement. That adventure is intrinsic to even
the most elementary description of analytic number theory.

The initial step in the investigation of a number theoretic item
is the formulation of “the generating function”. This formulation
inevitably moves us away from the designated subject to a consider-
ation of complex variables. Having wandered away from our subject,
it becomes necessary to effect a return. Toward this end “The Cauchy
Integral” proves to be an indispensable tool. Yet it leads us, inevitably,
further afield to all the intricacies of contour integration and they, in
turn entail the familiar processes, the deformation and estimation of
- these contour integrals.

Retracing our steps we find that we have gone from number theory
to function theory, and back again. The journey seems circuitous, yet
in its wake a pattern is revealed that implies a mathematics deeply
inter-connected and cohesive.
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I

The Idea of Analytic Number
Theory

The most intriguing thing about Analytic Number Theory (the use of
Analysis, or function theory, in number theory) is its very existence!
How could one use properties of continuous valued functions to de-
termine properties of those most discrete items, the integers. Analytic
functions? What has differentiability got to do with counting? The
astonishment mounts further when we learn that the complex zeros
of a certain analytic function are the basic tools in the investigation
of the primes.

The answer to all this bewilderment is given by the two words
generating functions. Well, there are answers and answers. To those
of'us who have witnessed the use of generating functions this is a kind
of answer, but to those of us who haven’t, this is simply a restatement
of the question. Perhaps the best way to understand the use of the
analytic method, or the use of generating functions, is to see it in
action in a number of pertinent examples. So let us take a look at
some of these.

Addition Problems

Questions about addition lend themselves very naturally to the use of
generating functions. The link is the simple observation that adding
m and n is isomorphic to multiplying z” and z". Thereby questions
about the addition of integers are transformed into questions about
the multiplication of polynomials or power series. For example, La-
grange’s beautiful theorem that every positive integer is the sum of
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four squares becomes the statement that all of the coefficients of the
4

power series for (1 +z+t 44 ) are positive. How
one proves such a fact about the coefficients of such a power series
is another story, but at least one begins to see how this transition
from integers to analytic functions takes place. But now let’s look at
some addition problems that we can solve completely by the analytic
method.

Change Making

How many ways can one make change of a dollar? The answer is
293, but the problem is both too hard and too easy. Too hard because
the available coins are so many and so diverse. Too easy because it
concerns just one “change,” a dollar. More fitting to our spirit is the
following problem: How many ways can we make change for n if the
coins are 1, 2, and 3? To form the appropriate generating function,
let us write, for |z] < 1,

=14zt g

1 -1z
1

3 =14+ 24+ 242 2
1

1_7 1+ 4+ 45884

and multiplying these three equations to get
1
(1 -2 —-20 - 2%
=(l4+z+Z"+- A+ +7+00)
x(1+22+227+-.).

Now we ask ourselves What happens when we multiply out the right-
hand side? We obtain terms like z!T'+!*! . z2 . z3¥3_ On the one
hand, this term is z'2, but, on the other hand, it is zfourl’stone2+two3’s
and doesn’t this exactly correspond to the method of changing the
amount 12 into four 1’s, one 2, and two 3’s? Yes, and in fact we
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see that “every” way of making change (into 1’s, 2’s, and 3’s) for
“every” n will appear in this multiplying out. Thus if we call C (n) the
number of ways of making change for n, then C (n) will be the exact
coefficient of z" when the multiplication is effected. (Furthermore
all is rigorous and not just formal, since we have restricted ourselves
to |z|] < 1 wherein convergence is absolute.)

Thus

n 1
2 €z = 1-21 -1 -2)’ &

and the generating function for our unknown quantity C(n) is
produced. Our number theoretic problem has been translated into
a problem about analytic functions, namely, finding the Taylor
coefficients of the function G——rr—s .

Fine. A well defined analytic problem, but how to solve it? We must
resist the temptation to solve this problem by undoing the analysis
which led to its formulation. Thus the thing not to do is expand —
= » 72 respectively into Y 27, 3~ z%,)" 2 and multiply only to
dlscover that the coefficient is the number of ways of making change
for n.

The correct answer, in this case, comes from an algebraic tech-
nique that we all learned in calculus, namely partial fraction. Recall
that this leads to terms like ;== for which we know the expan-
sion explicitly (namely, —'—-; is Just a constant times the (k — 1)th
derivative of - az) = ) o z")

Carrying out the algebra, then, leads to the partial fractional
decomposition which we may arrange in the following form:

1
(1-2(0-2)1-2%
RS SR N R
T 6(0—-2P 4(0-22 4(1-z») 30-2)

Thus, since

1 d
5 421-2 Zz =) (n+ 1"
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and
1 d 1 _d n+1
(1—208 dz2(0—2? dz 2
n+2)n+1) ,
:Z Z 5
2
_ (n+2)n+1)  n+1 %, if n is even,
Gl = 12 4 lg, if 3|n (2)

A somewhat cumbersome formula, but one which can be shortened
nicely into

n* n
C(n)=|:ﬁ+§+l], 3)

where the terms in the brackets mean the greatest integers.

A nice crisp exact formula, but these are rare. Imagine the mess
that occurs if the coins were the usual coins of the realm, namely 1, 5,
10, 25, 50, (100?). The right thing to ask for then is an “asymptotic”
formula rather than an exact one.

Recall that an asymptotic formula F (n) for a function f (n) is one
for which lim,,_, o, ’;EZ; = 1. In the colorful language of E. Landau,
the relative error in replacing f(n) by F(n) is eventually 0%. At
any rate, we write f(n) ~ F(n) when this occurs. One famous such

example is Stirling’s formula n! ~ +/27n(%)". (Also note that our

result (3) can be weakened to C(n) ~ 'l'—; .

So let us assume quite generally that there are coins ay, a3, a3, . . .,
ax, where to avoid trivial congruence considerations we will require
that there be no common divisiors other than 1. In this generality we
ask for an asymptotic formula for the corresponding C (n). As before
we find that the generating function is given by

1
no_ - 4
E C(n)z (- z‘“)(l _ Zaz) J s (1 — %) 4)

But the next step, explicitly finding the partial fractional decompo-
sition of this function is the hopeless task. However, let us simply
look for one of the terms in this expansion, the heaviest one. Thus
at z = 1 the denominator has a k-fold zero and so there will be a
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term =z . All the other zeros are at roots of unity and, because we
assumed no common divisiors, all will be of order lower than k.

Thus, although the coefﬁcient of the term < is c(}*), the

coefficients of all other terms =2 will be aw/ (T” ). Since all of
these j are less than &, the sum total of all of these terms is negligible
compared to our one heavy term c(} ). In short C(n) ~ c(;*), or
even simpler,

k=1

(k — 1)

C(n) ~c

But, what is ¢? Although we have deftly avoided the necessity of
finding all of the other terms, we cannot avoid this one (it’s the whole
story!). So let us write
1 _ c
(I —z2)1 ~z9)-- -l -2} {1—2)

+ other terms,

multiply by (1 — z)* to get

1 — 1 -z 1 —
z z = ¢ + (1 — 2)¥ x other terms,
1 —_ Za| 1 —_ :ug 1_ de
and finally let z — 1. By L’Hopital’s rule, for example, - — — al

whereas each of the other terms times (1 — z)* goes to 0. The final
resultis ¢ = _———, and our final asymptotic formula reads

nk—l

R g Tk ©

Crazy Dice

An ordinary pair of dice consist of two cubes each numbered 1
through 6. When tossed together there are altogether 36 (equally
likely) outcomes. Thus the sums go from 2 to 12 with varied
numbers of repeats for these possibilities. In terms of our ana-
lytic representation, each die is associated with the polynomial
2+ 22+ 722 + 2* + 22 + 25 The combined possibilities for the
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sums then are the terms of the product

G+Z2+2 4+ +22+c+ 2+ 2+ +P+ 9
=722 4+222 +32 +472° + 525 + 677
+ 528 + 47° + 3210 + 271 4 712

The correspondence, for example, says that there are 3 ways for the
10 to show up, the coefficients of z'° being 3, etc. The question is Is
there any other way to number these two cubes with positive integers
so as to achieve the very same alternatives?

Analytically, then, the question amounts to the existence of
positive integers, a,, - - - , as; by, - - -, bg, so that

@+ 4+ 2%+ -+ )
=22 +22 +3z24 + - 4+ 3710 4 271 4 12,

These would be the “Crazy Dice” referred to in the title of this sec-
tion. They look totally different from ordinary dice but they produce
exactly the same results!

So, repeating the question, can

@+ 2+ + %)
=Z+22+22+2+22+75 (6)
Xz+2Z2+2+24+2 +25?

To analyze this possibility, let us factor completely (over the ratio-
nals) this right-hand side. Thus z + 2> + 2> + * + 2° + ® =
221+ 2) =20 + 24+ (1 + 2)(1 — z + 2%). We conclude
from (6) that the “a-polynomial” and “b-polynomial” must consist of
these factors. Also there are certain side restrictions. The a’s and b’s
are to be positive and so a z factor must appear in both polynomials.
The a-polynomial must be 6 at z = 1 and so the (1 + z + z?)(1 + 2)
factor must appear in it, and similarly in the b-polynomial. All that
is left to distribute are the two factors of 1 — z + z°. If one apiece are
given to the a- and b- polynomials, then we get ordinary dice. The
only thing left to try is putting both into the a-polynomial.
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This works! We obtain finally ‘
Zz“ =z(1+z+ 20 +2)(1 — z + 2%)?
—z+2+2++ 20+ + 8
and
Y =z +z+2P)(I+2) =z2+22 422 +7*

Translating back, the crazy dice are 1,3,4,5,6,8 and 1,2,2,3,3 4.

Now we introduce the notion of the representation function. So,
suppose there is a set A of nonnegative integers and that we wish to
express the number of ways in which a given integer n can be written
as the sum of two of them. The trouble is that we must decide on
conventions. Does order count? Can the two summands be equal?
Therefore we introduce three representation functions.

r(n) ={#a,a’ € A,n =a+a'};
So here order counts, and they can be equal;
ry(n) ={#a,a’ €e A,a<a',n=a+ad},
order doesn’t count, and they can be equal;
r_(n) = {#a,a’ € A,a <a',n=a+a',

order doesn’t count, and they can’t be equal. In terms of the generat-
ing function for the set A, namely, A(z) = Zae 4 2%, We can express
the generating functions of these representation functions.

The simplest is that of r(n), where obviously

Y rm)z" = AXQ). (7)

To deal with r_ (n), we must subtract A(z?) from A?(z) to remove
the case of a = &’ and then divide by 2 to remove the order. So here

1
D r-mz" = S[A%@) — A@)]. ®)



