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Preface

This book expands lecture notes by the authors for a course on Introduction of Spec-
tral Methods taught in the past few years at Penn State University, Simon Fraser
University, the Chinese University of Hong Kong, Hong Kong Baptist University,
Purdue University and the Chinese Academy of Sciences. Our lecture notes were
also used by Prof. Zhenhuan Teng in his graduate course at Peking University.

The overall emphasis of the present book is to present some basic spectral and
high-order algorithms together with applications to some linear and nonlinear pro-
blems that one frequently encounters in practice. The algorithms in the book are pre-
sented in a pseudocode format or with MATLAB or FORTRAN codes that contain
additional details beyond the mathematical formulas. The reader can easily write
computer routines based on the pseudocodes in any standard computer language. We
believe that the readers learn and understand numerical methods best by seeing how
algorithms are developed from the mathematical theory and then writing and testing
computer implementations of them. For those interested in the numerical analysis of
the spectral methods, we have also provided self-contained error analysis for some
basic spectral-Galerkin algorithms presented in the book. Our aim is to provide a
sufficient background on the implementation and analysis of spectral and high-order
methods so that the readers can approach the current research literature with the ne-
cessary tools and understanding.

We hope that this book will be useful for people studying spectral methods on
their own. It may also serve as a textbook for advanced undergraduate/beginning
graduate students. The only prerequisite for the present book is a standard course in
Numerical Analysis.

This project has been supported by NSERC Canada, National Science Founda-
tion, Research Grant Council of Hong Kong, and International Research Team of
Complex System of the Chinese Academy of Sciences. In writing this book, we have
received much help from our friends and students. In particular, we would like to
thank Dr. Lilian Wang of Nanyang Technical University of Singapore for his many
contributions throughout the book. We are grateful to the help provided by Zhongzhi
Bai of the Chinese Academy of Sciences, Weizhu Bao of National University of Sin-
gapore, Raymond Chan of Chinese University of Hong Kong, Wai Son Don of Brown
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University, Heping Ma of Shanghai University and Xuecheng Tai of Bergen Univer-
sity of Norway. Our gratitude also goes to Professor Hermann Brunner of Memorial
University of Newfoundland, Dr. Zhengru Zhang of Beijing Normal University, and
the following graduate students at Purdue, Qirong Fang, Yuen-Yick Kwan, Hua Lin,
Xiaofeng Yang and Yanhong Zhao, who have read the entire manuscripts and pro-
vided many constructive suggestions. Last but not the least, we would like to thank
our wives and children for their love and support.

A website relevant to this book can be found in

http://www.math.hkbu.edu.hk/~ttang/PGteaching
or

http://lsec.cc.ac.cn/~ttang/PGteaching

We welcome comments and corrections to the book. We can be reached by
email to

shen@math.purdue.edu(Shen)and t tang@math.hkbu.edu.hk(Tang).
Jie Shen
Purdue University

Tao Tang
Hong Kong Baptist University
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In this chapter, we present some preliminary materials which will be used through-
out the book. The first section set the stage for the introduction of spectral methods.
In Sections 1.2—1.4, we present some basic properties of orthogonal polynomials,
which play an essential role in spectral methods, and introduce the notion of ge-
neralized Jacobi polynomials. Since much of the success and popularity of spectral
methods can be attributed to the invention of Fast Fourier Transform (FFT), an algo-
rithmic description of the FFT is presented in Section 1.5. In the next two sections,
we collect some popular time discretization schemes and iterative schemes which
will be frequently used in the book. In the last section, we present a concise error
analysis for several projection operators which serves as the basic ingredients for the
error analysis of spectral methods.
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1.1 Some basic ideas of spectral methods

Comparison with the finite element method
Computational efficiency

Fourier spectral method

Phase error

Finite Difference (FD) methods approximate derivatives of a function by local argu-
ments (such as v'(z) = (u(z+ h) —u(z — h))/2h, where h is a small grid spacing) -
these methods are typically designed to be exact for polynomials of low orders. This
approach is very reasonable: since the derivative is a local property of a function, it
makes little sense (and is costly) to invoke many function values far away from the
point of interest.

In contrast, spectral methods are global. The traditional way to introduce them
starts by approximating the function as a sum of very smooth basis functions:

N
u(@) ~ ) ax®i(2),
k=0

where the ®(z) are polynomials or trigonometric functions. In practice, there are
many feasible choices of the basis functions, such as:

@i (x) = e*? (the Fourier spectral method);

@y (z) = Tk (z) (Tk(x) are the Chebyshev polynomials; the Chebyshev spec-
tral method);

®r(z) = Li(z) (Lg(z) are the Legendre polynomials; the Legendre spectral
method).

In this section, we will describe some basic ideas of spectral methods. For ease
of exposition, we consider the Fourier spectral method (i.e. the basis functions are
chosen as e***). We begin with the periodic heat equation, starting at time O from
up(x):

Ut = Ugg, (1.1.1)

with a periodic boundary condition u(z,0) = ug(z) = ug(z + 27). Since the exact
solution u is periodic, it can be written as an infinite Fourier series. The approximate
solution »V can be expressed as a finite series. It is

N—
ul(xz,t) = ax(t)e*®, z € [0,27),
k=0

—



1.1  Some basic ideas of spectral methods 3

where each aj(t) is to be determined.

Comparison with the finite element method

We may compare the spectral method (before actually describing it) to the finite
element method. One difference is this: the trial functions 73 in the finite element
method are usually 1 at the mesh-point, 2 = kh with h = 27/, and 0O at the other
mesh-points, whereas ¢*® is nonzero everywhere. That is not such an important
distinction. We could produce from the exponentials an interpolating function like
Tk, which is zero at all mesh-points except at £ = Tk

1 . N 1

Fi(z) =  Sin E(z — zi) cot §(z — Tg), Neven, (1.1.2)
1 . N 1

Fy(z) = v Sin 5(95 — Tk ) csC 5(9: — Tk), N odd. (1.1.3)

Of course it is not a piecewise polynomial; that distinction is genuine. A consequence
of this difference is the following:

Each function F}y spreads over the whole solution interval, whereas 7 is zero
in all elements not containing zx. The stiffness matrix is sparse for the finite
element method; in the spectral method it is full.

The computational efficiency

Since the matrix associated with the spectral method is full, the spectral method
seems more time-consuming than finite differences or finite elements. In fact, the
spectral method had not been used widely for a long time. The main reason is the
expensive cost in computational time. However, the discovery of the Fast Fourier
Transform (FFT) by Cooley and Tukey!*3! solves this problem. We will describe the
Cooley-Tukey algorithm in Chapter 5. The main idea is the following. Let wy =
eZﬂ'i/N and
2njk . . 2mjk

N +7,sinT, OS], ng—].

ik
(Fn)jk = why = cos

Then for any N-dimensional vector vy, the usual N operations in computing Fxvx
are reduced to N logy V. The significant improvement can be seen from the follow-
ing table:
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N N2 Nlog, N N N2 Nlog,N
16 256 64 256 65536 2048
32 1024 160 512 262144 4608
64 4096 384 1024 1048576 10240

128 16384 896 2048 4194304 22528

The Fourier spectral method

Unlike finite differences or finite elements, which replace the right-hand side
uz, by differences at nodes, the spectral method uses u’Y, exactly. In the spectral
method, there is no Az. The derivatives with respect to space variables are computed
explicitly and correctly.

N

The Fourier approximation u" is a combination of oscillations e***

quency N — 1, and we simply differentiate them; hence

up to fre-

ulN = ul¥,
becomes N1 | N—1 |
D ai(t)e™® =" ax(t)(ik)2eke
k=0 k=0
Since frequencies are uncoupled, we have a} (t) = —k?ax(t), which gives

ak(t) = e *"tay(0),

where the values ay(0) are determined by using the initial function:

an(0 _L o —ikzd
£(0) = 27 Jo up(z)e T.

It is an easy matter to show that

[o o]

Z ak(o)eikze—kzt

k=N

< max lax (0 Z 5%

u(z, t) — u(z, )| =

< max ]uo(a:)|/ e % dz.
0<a<2r N

Therefore, the error goes to zero very rapidly as /N becomes reasonably large. The
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convergence rate is determined by the integral term

J(t,N) := / e ds = \ —erfe(VEN),
B 4t

where erfc(x) is the complementary error function (both FORTRAN and MAT-
LAB have this function). The following table lists the value of J(t, N) at several
values of ¢:

N J(0.1, N) J(0.5, N) J(1, N)

1 1.8349e+00 3.9769e-01 1.3940e-01
2 1.0400e+00 5.7026e-02 4.1455e-03
3 5.0364e-01 3.3837e-03 1.9577e-05
4 2.0637e-01 7.9388e-05 1.3663e-08
5 7.1036e-02 7.1853e-07 1.3625e-12
6 2.0431e-02 2.4730e-09 1.9071e-17
7 4.8907e-03 3.2080e-12 3.7078e-23
8 9.7140e-04 1.5594e-15 9.9473e-30

In more general problems, the equation in time will not be solved exactly. It needs a
difference method with time step At, as Chapter 5 will describe. For derivatives with
respect to space variables, there are two ways:

(1) Stay with the harmonics %% or sin kz or cos kz, and use FFT to go between
coefficients a;, and mesh values u¥ (z;, ). Only the mesh values enter the difference
equation in time.

(2) Use an expansion U = ) Ug(t)Fy(z), where Fi(z) is given by (1.1.2) and
(1.1.3), that works directly with values Uy at mesh points (where Fj, = 1). There is
a differentiation matrix D that gives mesh values of the derivatives, D = F}(z;).
Then the approximate heat equation becomes U; = D?U.

Phase error

The fact that z-derivatives are exact makes spectral methods free of phase error.
Differentiation of the multipliers e*** give the right factor ik while finite differences
lead to the approximate factor 2K :

@ th) _ gikla—h) _ . 4 _ sinkh
2h ’ h

When kh is small and there are enough mesh points in a wavelength, K is close
to k. When kh is large, K is significantly smaller than k. In the case of the heat
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equation (1.1.1) it means a slower wave velocity. For details, we refer to Richtmyer
and Morton!'3!! and LeVeque ['°!!. In contrast, the spectral method can follow even
the nonlinear wave interactions that lead to turbulence. In the context of solving high
Reynolds number flow, the low physical dissipation will not be overwhelmed by large
numerical dissipation.

Exercise 1.1

Problem 1 Consider the linear heat equation (1.1.1) with homogeneous Dirich-
let boundary conditions u(—1,¢) = 0 and u(1,¢) = 0. If the initial condition is
u(z,0) = sin(nz), then the exact solution of this problem is given by u(z,t) =
e~™tsin(mz). It has the infinite Chebyshev expansion

o0
u(z,t) = an(t)Tn(x)v
n=0
where
bu(t) = ——J, (m)e~""t
n C,n n k)
withcg =2andc, =1ifn > 1.
a. Calculate 1
1
Jn (7 =/ ——T, (z)sin(7z)dz
n( ) -1 m 77.( ) ( )

by some numerical method (e.g. Simpson’s rule)?;

b. Plot J,(7) against n for n < 25. This will show that the truncation series
converges at an exponential rate (a well-designed collocation method will do the
same).

1.2 Orthogonal polynomials

Existence

Zeros of orthogonal polynomials

Polynomial interpolations

Quadrature formulas

Discrete inner product and discrete transform

@ Hint: (a) Notice that J, () = 0 when n is even; (b) a coordinate transformation like z = cos 6
may be used.
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Orthogonal polynomials play a fundamental role in the implementation and analysis
of spectral methods. It is thus essential to understand some general properties of
orthogonal polynomials. Two functions f and g are said to be orthogonal in the
weighted Sobolev space L2 (a, b) if

b
(f, 9) == (f,9)u = / w(@)f(z)g(z)dz =0,

where w is a fixed positive weight function in (a, b). It can be easily verified that (-, -)
defined above is an inner product in L2 (a, b).

A sequence of orthogonal polynomials is a sequence {p,}5°, of polynomials
with deg(p,,) = n such that

(pi, pj) =0 for i # j. (1.2.1)

Since orthogonality is not altered by multiplying a nonzero constant, we may nor-
malize the polynomial p,, so that the coefficient of 2" is one, i.e.,

pn(z) = 2™ + aﬁln_)la:"_l oras 4 a((]").
Such a polynomial is said to be monic.

Existence

Our immediate goal is to establish the existence of orthogonal polynomials. Al-
though we could, in principle, determine the coefficients a;") of p, in the natural
basis {z’} by using the orthogonality conditions (1.2.1), it is more convenient, and
numerically more stable, to express p,+; in terms of lower-order orthogonal polyno-

mials. To this end, we need the following general result:

Let {pn }32 , be a sequence of polynomials such that p, is exactly of degree n.

If
q(z) = az" + an_12" 1 + .- + ao, (1.2.2)

then g can be written uniquely in the form

q(x) = bppp + bp—1Pn—1 + - -+ + bopo. (1.2.3)

In establishing this result, we may assume that the polynomials {p,,} are monic.
We shall prove this result by induction. For n = 0, we have

q(z) = ap = ap - 1 = agpo().
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Hence we must have by = ag. Now assume that ¢ has the form (1.2.2). Since p,, is
the only polynomial in the sequence p,,pn_1,- - , po that contains z™ and since p,
is monic, it follows that we must have b,, = a,,. Hence, the polynomial ¢ — a,p, is
of degree n — 1. Thus, by the induction hypothesis, it can be expressed uniquely in

the form
q — @nPn = bp_1pn—1 + - - - + bopo,

which establishes the result.

A consequence of this result is the following:

Lemma 1.2.1 If the sequence of polynomials {py}3> is monic and orthogonal,
then the polynomial p, 1 is orthogonal to any polynomial q of degree n or less.

We can establish this by the following observation:

(Pn+15 @) = bn(Pr+t1, Pn) + bn—1(Pn+1, Pn—1) + -+ + bo(Pn+1, Po) = 0,
where the last equality follows from the orthogonality of the polynomials {p, }.

We now prove the existence of orthogonal polynomials®. Since pp is monic and

of degree zero, we have
po(z) = 1.
Since p; is monic and of degree one, it must have the form

pi(z) =z —oy.

To determine o, we use orthogonality:

b b
0 = (p1, Po) =/ w(z)xdr — a1/ w(z)dz.

Since the weight function is positive in (a, b), it follows that

o] = /abw(:c)xdm/ /ab w(x)dz.

In general we seek p;,+1in the formpy, 1 =Zpn—Qn 1P "Bt 1Pn—1—"Vn+1Pn—2—" .
As in the construction of p;, we use orthogonality to determine the coefficients above.

To determine o, 1, write

0 = (Pn+1, Pn) = (TPn, Pn) — 0nt1(Pns Pn) — Prt1{Pn—1, Dn) — -~

@ The procedure described here is known as Gram-Schmidt orthogonalization.



