MARK ALLEN WEISS

DATA STRUCTURES

AND

ALGORITHM ANALYSIS
IN

C++

FOURTH EDITION

ton

Fourth Ed

Data Structures

ithm
in

and Algor

IS

Analys

1SS

Mark Allen We

i

vers

ional Uni

da Internat

i

Flor

Mexico City ,

Editorial Director, ECS: Marcia Horton Cover Designer: Bruce Kenselaar

Executive Editor: Tracy Johnson Permissions Supervisor: Michael Joyce

Editorial Assistant: Jenah Blitz-Stoehr Permissions Administrator; Jenell Forschler
Director of Marketing: Christy Lesko Cover Image: (© De-kay | Dreamstime.com
Marketing Manager: Yez Alayan Media Project Manager: Renata Butera

Senior Marketing Coordinator: Kathryn Ferranti Full-Service Project Management: Integra Software
Marketing Assistant: Jon Bryant Services Pvt. Ltd.

Director of Production: Erin Gregg Composition: Integra Software Services Pvt. Ltd.
Senior Managing Editor: Scott Disanno Text and Cover Printer/Binder: Courier Westford

Senior Production Project Manager: Marilyn Lloyd
Manufacturing Buyer: Linda Sager
Art Director: Jayne Conte

Copyright © 2014, 2006, 1999 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.
Printed in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Weiss, Mark Allen.
Data structures and algorithm analysis in C++ / Mark Allen Weiss, Florida International University. — Fourth
edition.
pages cm
ISBN-13: 978-0-13-284737-7 (alk. paper)
ISBN-10: 0-13-284737-X (alk. paper)
1. C++ (Computer program language) 2. Data structures (Computer science) 3. Computer algorithms. I. Title.
QA76.73.C153W46 2014
005.7'3—dc23
2013011064

10 9 87 6 5 4 3 21

PEARSON ISBN-10: 0-13-284737-X
www.pearsonhighered.com ISBN-13: 978-0-13-284737-7

Fourth Edition

Data Structures
and Algorithm
Analysis in

C++

e, 752 52 BEPDFIE V5) © www. ertongbook. com

To my kind, brilliant, and inspiring Sara.

PREFACE

Purpose/Goals

The fourth edition of Data Structures and Algorithm Analysis in C++ describes data structures,
methods of organizing large amounts of data, and algorithm analysis, the estimation of the
running time of algorithms. As computers become faster and faster, the need for programs
that can handle large amounts of input becomes more acute. Paradoxically, this requires
more careful attention to efficiency, since inefficiencies in programs become most obvious
when input sizes are large. By analyzing an algorithm before it is actually coded, students
can decide if a particular solution will be feasible. For example, in this text students look at
specific problems and see how careful implementations can reduce the time constraint for
large amounts of data from centuries to less than a second. Therefore, no algorithm or data
structure is presented without an explanation of its running time. In some cases, minute
details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As computers
have become more powerful, the problems they must solve have become larger and more
complex, requiring development of more intricate programs. The goal of this text is to teach
students good programming and algorithm analysis skills simultaneously so that they can
develop such programs with the maximum amount of efficiency.

This book is suitable for either an advanced data structures course or a first-year
graduate course in algorithm analysis. Students should have some knowledge of inter-
mediate programming, including such topics as pointers, recursion, and object-based
programming, as well as some background in discrete math.

Approach

Although the material in this text is largely language-independent, programming requires
the use of a specific language. As the title implies, we have chosen C++ for this book.

C++ has become a leading systems programming language. In addition to fixing many
of the syntactic flaws of C, C++ provides direct constructs (the class and template) to
implement generic data structures as abstract data types.

The most difficult part of writing this book was deciding on the amount of C++ to
include. Use too many features of C++ and one gets an incomprehensible text; use too few
and you have little more than a C text that supports classes.

The approach we take is to present the material in an object-based approach. As such,
there is almost no use of inheritance in the text. We use class templates to describe generic
data structures. We generally avoid esoteric C++ features and use the vector and string
classes that are now part of the C++ standard. Previous editions have implemented class
templates by separating the class template interface from its implementation. Although
this is arguably the preferred approach, it exposes compiler problems that have made it

Preface

difficult for readers to actually use the code. As a result, in this edition the online code
represents class templates as a single unit, with no separation of interface and implementa-
tion. Chapter 1 provides a review of the C++ features that are used throughout the text and
describes our approach to class templates. Appendix A describes how the class templates
could be rewritten to use separate compilation.

Complete versions of the data structures, in both C++ and Java, are available on
the Internet. We use similar coding conventions to make the parallels between the two
languages more evident.

Summary of the Most Significant Changes in the Fourth Edition

The fourth edition incorporates numerous bug fixes, and many parts of the book have
undergone revision to increase the clarity of presentation. In addition,

* Chapter 4 includes implementation of the AVL tree deletion algorithm—a topic often
requested by readers.

* Chapter 5 has been extensively revised and enlarged and now contains material on
two newer algorithms: cuckoo hashing and hopscotch hashing. Additionally, a new
section on universal hashing has been added. Also new is a brief discussion of the
unordered_set and unordered_map class templates introduced in C++11.

* Chapter 6 is mostly unchanged; however, the implementation of the binary heap makes
use of move operations that were introduced in C++11.

* Chapter 7 now contains material on radix sort, and a new section on lower-bound
proofs has been added. Sorting code makes use of move operations that were
introduced in C++11.

* Chapter 8 uses the new union/find analysis by Seidel and Sharir and shows the
O(M a(M,N)) bound instead of the weaker O(Mlog* N) bound in prior editions.

Chapter 12 adds material on suffix trees and suffix arrays, including the linear-time
suffix array construction algorithm by Karkkainen and Sanders (with implementation).
The sections covering deterministic skip lists and AA-trees have been removed.

* Throughout the text, the code has been updated to use C++11. Notably, this means
use of the new C++11 features, including the auto keyword, the range for loop, move
construction and assignment, and uniform initialization.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only way
to be comfortable with recursion is to see good uses over and over. Therefore, recursion
is prevalent in this text, with examples in every chapter except Chapter 5. Chapter 1 also
includes material that serves as a review of basic C++. Included is a discussion of templates
and important constructs in C++ class design.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic analysis
and its major weaknesses. Many examples are provided, including an in-depth explana-
tion of logarithmic running time. Simple recursive programs are analyzed by intuitively
converting them into iterative programs. More complicated divide-and-conquer programs
are introduced, but some of the analysis (solving recurrence relations) is implicitly delayed
until Chapter 7, where it is performed in detail.

Preface

Chapter 3 covers lists, stacks, and queues. This chapter includes a discussion of the STL
vector and list classes, including material on iterators, and it provides implementations
of a significant subset of the STL vector and 1ist classes.

Chapter 4 covers trees, with an emphasis on search trees, including external search
trees (B-trees). The UNIX file system and expression trees are used as examples. AVL trees
and splay trees are introduced. More careful treatment of search tree implementation details
is found in Chapter 12. Additional coverage of trees, such as file compression and game
trees, is deferred until Chapter 10. Data structures for an external medium are considered
as the final topic in several chapters. Included is a discussion of the STL set and map classes,
including a significant example that illustrates the use of three separate maps to efficiently
solve a problem.

Chapter 5 discusses hash tables, including the classic algorithms such as sepa-
rate chaining and linear and quadratic probing, as well as several newer algorithms,
namely cuckoo hashing and hopscotch hashing. Universal hashing is also discussed, and
extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is additional
material on some of the theoretically interesting implementations of priority queues. The
Fibonacci heap is discussed in Chapter 11, and the pairing heap is discussed in Chapter 12.

Chapter 7 covers sorting. It is very specific with respect to coding details and analysis.
All the important general-purpose sorting algorithms are covered and compared. Four
algorithms are analyzed in detail: insertion sort, Shellsort, heapsort, and quicksort. New to
this edition is radix sort and lower bound proofs for selection-related problems. External
sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time. This is a
short and specific chapter that can be skipped if Kruskal’s algorithm is not discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not only
because they frequently occur in practice but also because their running time is so heavily
dependent on the proper use of data structures. Virtually all of the standard algorithms
are presented along with appropriate data structures, pseudocode, and analysis of running
time. To place these problems in a proper context, a short discussion on complexity theory
(including NP-completeness and undecidability) is provided.

Chapter 10 covers algorithm design by examining common problem-solving tech-
niques. This chapter is heavily fortified with examples. Pseudocode is used in these later
chapters so that the student’s appreciation of an example algorithm is not obscured by
implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 and
6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 covers search tree algorithms, the suffix tree and array, the k-d tree, and
the pairing heap. This chapter departs from the rest of the text by providing complete and
careful implementations for the search trees and pairing heap. The material is structured so
that the instructor can integrate sections into discussions from other chapters. For example,
the top-down red-black tree in Chapter 12 can be discussed along with AVL trees (in
Chapter 4).

Chapters 1 to 9 provide enough material for most one-semester data structures courses.
If time permits, then Chapter 10 can be covered. A graduate course on algorithm analysis
could cover chapters 7 to 11. The advanced data structures analyzed in Chapter 11 can
easily be referred to in the earlier chapters. The discussion of NP-completeness in Chapter 9

xviii

Preface

is far too brief to be used in such a course. You might find it useful to use an additional
work on NP-completeness to augment this text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material is pre-
sented. The last exercises may address the chapter as a whole rather than a specific section.
Difficult exercises are marked with an asterisk, and more challenging exercises have two
asterisks.

References

References are placed at the end of each chapter. Generally the references either are his-
torical, representing the original source of the material, or they represent extensions and
improvements to the results given in the text. Some references represent solutions to
exercises.

Supplements

The following supplements are available to all readers at http://cssupport.pearsoncmg.conm/

* Source code for example programs

e Errata

In addition, the following material is available only to qualified instructors at Pearson
Instructor Resource Center (www.pearsonhighered.com/irc). Visit the IRC or contact your
Pearson Education sales representative for access.

¢ Solutions to selected exercises
« Figures from the book

¢ Errata

Acknowledgments
Many, many people have helped me in the preparation of books in this series. Some are
listed in other versions of the book; thanks to all.

As usual, the writing process was made easier by the professionals at Pearson. I'd like
to thank my editor, Tracy Johnson, and production editor, Marilyn Lloyd. My wonderful
wife Jill deserves extra special thanks for everything she does.

Finally, I'd like to thank the numerous readers who have sent e-mail messages and
pointed out errors or inconsistencies in earlier versions. My website www.cis.fiu.edu/~weiss
will also contain updated source code (in C++ and Java), an errata list, and a link to submit
bug reports.

MAW
Miami, Florida

Preface xv

Chapter 1 Programming: A General Overview 1
1.1 What’s This Book About? 1
1.2 Mathematics Review 2

1.2.1 Exponents 3
1.2.2 Logarithms 3
1.2.3 Series 4
1.2.4 Modular Arithmetic 5
1.2.5 The PWord 6
1.3 A Brief Introduction to Recursion 8
1.4 C++ Classes 12
1.4.1 Basic class Syntax 12
1.4.2 Extra Constructor Syntax and Accessors 13
1.4.3 Separation of Interface and Implementation 16
1.4.4 vector and string 19
1.5 C++ Detalils 21
1.5.1 Pointers 21
1.5.2 Lvalues, Rvalues, and References 23
1.5.3 Parameter Passing 25
1.5.4 Return Passing 27
1.5.5 std::swap and std::move 29
1.5.6 The Big-Five: Destructor, Copy Constructor, Move Constructor, Copy
Assignment operator=, Move Assignment operator= 30
1.5.7 C-style Arrays and Strings 35
1.6 Templates 36
1.6.1 Function Templates 37
1.6.2 Class Templates 38
1.6.3 Object, Comparable, and an Example 39
1.6.4 Function Objects 41
1.6.5 Separate Compilation of Class Templates 44
1.7 Using Matrices 44
1.7.1 The Data Members, Constructor, and Basic Accessors 44
1.7.2 operator[] 45

viii Contents

1.7.3 Big-Five 46
Summary 46
Exercises 46
References 48

Chapter 2 Algorithm Analysis 51

2.1
2.2
2.3
2.4

Mathematical Background 51

Model 54

What to Analyze 54

Running-Time Calculations 57

2.4.1 A Simple Example 58

242 General Rules 58

2.4.3 Solutions for the Maximum Subsequence
Sum Problem 60

244 Logarithms in the Running Time 66

2.4.5 Limitations of Worst-Case Analysis 70

Summary 70

Exercises 71

References 76

Chapter 3 Lists, Stacks, and Queues 77

3.1
3.2

3.3

3.4
3.5
3.6

3.7

Abstract Data Types (ADTs) 77

The List ADT 78

3.2.1 Simple Array Implementation of Lists 78
3.2.2 Simple Linked Lists 79

vector and Tist in the STL 80

3.3.1 Iterators 82

3.3.2 Example: Using eraseon a List 83
3.3.3 const_iterators 84

Implementation of vector 86
Implementation of 1ist 91

The Stack ADT 103

3.6.1 Stack Model 103

3.6.2 Implementation of Stacks 104

3.6.3 Applications 104

The Queue ADT 112

3.7.1 Queue Model 113

3.7.2 Array Implementation of Queues 113
3.7.3 Applications of Queues 115
Summary 116

Exercises 116

Contents

Chapter 4 Trees 121

4.1

4.2

4.3

44

4.5

4.6
4.7
4.8

Preliminaries 121

4.1.1 TImplementation of Trees 122

4.1.2 Tree Traversals with an Application 123
Binary Trees 126

4.2.1 Implementation 128

422 An Example: Expression Trees 128

The Search Tree ADT—Binary Search Trees 132
4.3.1 contains 134

432 findMinand findMax 135

433 insert 136

434 remove 139

4.3.5 Destructor and Copy Constructor 141
4.3.6 Average-Case Analysis 141

AVL Trees 144

4.4.1 Single Rotation 147

4.4.2 Double Rotation 149

Splay Trees 158

4.5.1 A Simple Idea (That Does Not Work) 158
4.5.2 Splaying 160

Tree Traversals (Revisited) 166
B-Trees 168
Sets and Maps in the Standard Library 173

4.8.1 Sets 173

4.82 Maps 174

4.8.3 Implementation of set andmap 175

4.8.4 An Example That Uses Several Maps 176
Summary 181

Exercises 182

References 189

Chapter 5 Hashing 193

5.1
S
5.3
5.4

55
5.6

General Idea 193

Hash Function 194

Separate Chaining 196

Hash Tables without Linked Lists 201
5.4.1 Linear Probing 201

5.4.2 Quadratic Probing 202

5.4.3 Double Hashing 207

Rehashing 208

Hash Tables in the Standard Library 210

Contents

5.7 Hash Tables with Worst-Case O(1) Access
5.7.1 Perfect Hashing 213
5.7.2 Cuckoo Hashing 215
5.7.3 Hopscotch Hashing 227

5.8 Universal Hashing 230
5.9 Extendible Hashing 233
Summary 236
Exercises 237
References 241

Chapter 6 Priority Queues (Heaps)

6.1 Model 245

6.2 Simple Implementations
6.3 Binary Heap 247
6.3.1 Structure Property 247

6.3.2 Heap-Order Property 248

6.3.3 Basic Heap Operations 249
6.3.4 Other Heap Operations 252
Applications of Priority Queues 257
6.4.1 The Selection Problem 258
6.4.2 Event Simulation 259

d-Heaps 260

Leftist Heaps 261

6.6.1 Leftist Heap Property 261

6.6.2 Leftist Heap Operations 262
Skew Heaps 269

Binomial Queues 271

6.8.1 Binomial Queue Structure 271
6.8.2 Binomial Queue Operations 271
6.8.3 Implementation of Binomial Queues
Priority Queues in the Standard Library
Summary 283

Exercises 283

References 288

246

6.4

6.5
6.6

6.7
6.8

6.9

Chapter 7 Sorting

7.1 Preliminaries 291

7.2 Insertion Sort 292
7.2.1 The Algorithm 292
7.2.2 STL Implementation of Insertion Sort
7.2.3 Analysis of Insertion Sort 294

7.3 A Lower Bound for Simple Sorting Algorithms

212

245

276
282

291

203

295

i s

7.5

7.6

1.0

7.8

7.9

Contents

Shellsort 296

7.4.1 Worst-Case Analysis of Shellsort 297

Heapsort 300

7.5.1 Analysis of Heapsort 301

Mergesort 304

7.6.1 Analysis of Mergesort 306

Quicksort 309

7.7.1 Picking the Pivot 311

7.7.2 Partitioning Strategy 313

7.7.3 Small Arrays 315

7.7.4 Actual Quicksort Routines 315

7.7.5 Analysis of Quicksort 318

7.7.6 A Linear-Expected-Time Algorithm for Selection 321
A General Lower Bound for Sorting 323

7.8.1 Decision Trees 323

Decision-Tree Lower Bounds for Selection Problems 325

7.10 Adversary Lower Bounds 328
7.11 Linear-Time Sorts: Bucket Sort and Radix Sort 331
7.12 External Sorting 336

7.12.1 Why We Need New Algorithms 336
7.12.2 Model for External Sorting 336
7.12.3 The Simple Algorithm 337

7.12.4 Multiway Merge 338

7.12.5 Polyphase Merge 339

7.12.6 Replacement Selection 340
Summary 341

Exercises 341

References 347

Chapter 8 The Disjoint Sets Class 351

8.1
8.2
8.3
8.4
8.5
8.6

8.7

Equivalence Relations 351

The Dynamic Equivalence Problem 352

Basic Data Structure 353

Smart Union Algorithms 357

Path Compression 360

Worst Case for Union-by-Rank and Path Compression 361
8.6.1 Slowly Growing Functions 362

8.6.2 An Analysis by Recursive Decomposition 362
8.6.3 An O(M log* N)Bound 369

864 AnO(Ma(M,N))Bound 370

An Application 372

xii Contents

Summary 374
Exercises 375
References 376

Chapter 9 Graph Algorithms

9.1

9.2
9.3

9.4

9.5

9.6

9.7

Definitions 379

9.1.1 Representation of Graphs 380
Topological Sort 382

Shortest-Path Algorithms 386

9.3.1 Unweighted Shortest Paths 387
9.3.2 Dijkstra’s Algorithm 391

9.3.3 Graphs with Negative Edge Costs 400
9.3.4 Acyclic Graphs 400

0.3.5 All-Pairs Shortest Path 404

0.3.6 Shortest Path Example 404
Network Flow Problems 406

9.4.1 A Simple Maximum-Flow Algorithm 408
Minimum Spanning Tree 413

9.5.1 Prims5 Algorithm 414

9.5.2 Kruskals Algorithm 417
Applications of Depth-First Search 419
9.6.1 Undirected Graphs 420

9.6.2 Biconnectivity 421

9.6.3 Euler Circuits 425

9.6.4 Directed Graphs 429

9.6.5 Finding Strong Components 431
Introduction to NP-Completeness 432
9.7.1 Easyvs. Hard 433

0.7.2 The Class NP 434

0.7.3 NP-Complete Problems 434
Summary 437

Exercises 437

References 445

Chapter 10 Algorithm Design Techniques
10.1 Greedy Algorithms 449

10.1.1 A Simple Scheduling Problem 450
10.1.2 Huffman Codes 453
10.1.3 Approximate Bin Packing 459

10.2 Divide and Conquer 467

10.2.1 Running Time of Divide-and-Conquer Algorithms
10.2.2 Closest-Points Problem 470

468

379

449

