Y

= @ N B i B

- LiInux
18 E RGP A SES)

(SR3ZhR)

G
fis!

t — (%) Gary Nutt

| Tk W AR
a Machine Press A\ A4

&

XhiR)

INUX

L
tERGEP B2

IR

English reprint edition copyright © 2002 by PEARSON
EDUCATION NORTH ASIA LTD and China Machine Press.

Original English language title: Kernel Projects for Linux, first
edition by Gary Nutt, Copyright © 2001.

All Rights Reserved.

Published by arrangement with the original publisher, Pearson
Education, Inc., publishing as Addison Wesley Longman, Inc.

This edition is authorized for sale only in People’s Republic of China
(excluding the Special Administrative Region of Hong Kong and Macau).

7 5+ 575 Pearson Education$ 4 #(& t i £ I 306 Dyis
&, InEEIEHE,

AHRRNEIZS: EF: 01-2001-2201
BEHERRBE (CIP) ¥iE

Linux#/ERFEAZLET . FEXR/ (£) MBS (Nutt, G)
. At PR T HARA, 20026

(ZHFRRBE)

F42JE3C: Kemel Projects for Linux

ISBN 7-111-10099-9

[.L- I.fn--- 10 Linux¥fERS - %3 V. TP316.81
rp B R A B AR CIPEUE B (2002) 50171918

PO T AL (eRAERR B R A2 MREARE 100037)
FiEwE: ¢ =

R EFFEREENRI BRG] - FrteBIEILR RITH R1T
20024E6 A 851 IS 1 YR ER R

850mm x 1168mm1/32 - 8.25E03K

ER¥: 0001-4 000/

FEMr: 32.000C (B2)

FaAH, WABT. BIT. B, hAdtRTiimk

tEhRE BYE

XEEXURE, FRRKEREEHMZELERNEARNE, Frh5E
K A RBHER S TEREE T 2B RIERXFMESE, FXE
EREBEARRBIATEZERBREL . MENE, FERLLHHEES, £
HE= LA SHE RSB EFHE S, HREIERPRFZR LI Fr
SARIMBEENRETE, BT ERNSBRIEEE, MUBRTHRN
B, BRETEARWEE, BEBEFANGE, XEF%EEME, ENMEH
AEHEER BT TR .

EE, ERRERBARFNESNT, REMITEI=LERIE, g
WAAKTRERIET, XXHENBERAERAFERIE, BHEHk
i MELBEMWBREHT R LBEAERERE, EREGEBEARREN
EEE. MILARBEDHIRT, RS EERERLITEINRZERRHIL
TERBIENZ MBI NA T ERBEEZL, Bk, 51#E—-#ESMEFET
BB RN REHTENBETF LN RREPRGEISNER, Bt_RSHAE
H. BREEMHF —RRENDBEZE,

PUB Tk i At B ESUE B A RA AR ERRS “HMEABERSF .
H19984Eh, REAFRMK LEEAMAET #ik. BiFEIMIZEM L. &
SRR TESE S1, A1 5Prentice Hall, Addison-Wesley, McGraw-Hill,
Morgan KaufmannZit R EZ HRAFIEN T RIFHSIERXRR, NEMAER
¥UE R A B H Tanenbaum, Stroustrup, Kernighan, Jim Gray% KJf4 K
W—HEEER, D “TEIBEAS HEFRER, ftiFEEd. IRk
k. KEASERMEHE, WEERRTXEABERHAFERE,

“SHEUFZEAR” WHRTAESS TERNIMEENS IER, BRN%
FAUREE T P EREBEE R, BAFSEHBE T BFMERNITIE; m
JRH Ve B S R EREAEMAE T ERERE, ARETERAEBH P FERE
o 184, “ITEVRENR BB TIEE MM, XEREETE PR
ST RFH OB, HEFZRERANEXBMMSE LR, hiHE—PH
HRBEATT T REHHAL

FEEF R MP) L T EMBM BENZH R, BE R EINTEN
A BTRFBLAR L A— BB . Ak, FEAREINATHHEM
HE, E “CEHEF" HEARANZTHR=ARITENSEM : &xt48
AERZOIREE, PIPSMNREETS “BINEREMN” RI; TR,
MBMFFREY “RMFRBE" ; EMEREHEBEMEVSEY “HEYR
FNB” ERRIFEORE XA, SR IRFTRET . A TRIEX=ZENHEH
BUBAE, RS T B R E R MBI I1RS, €EAFAEET PER ¥
Be. bR, HEKRE., BRI KRE. REXY¥, FEERY, B
R, LK%, PEBHEKRE ., MRETW A, ALRER¥. FEA
RA%E. AEMEMRKE., JERHBE RS, FIK¥E, BRER T R¥,
IMKZE . LT 2B P EERERZSWHAEF OZE N E S KEM
PIAETT AN SN GENEZFEHAR “EREFERE", IRIR
PG RR R AN AR

“GHFIRBE R A TR AFERENEAM SR, IEN
BRI RIS E ST . 75 ZHAERIFTBA B “ERILIBREL”
MRS, BITRAEE TX0ZHEIBAZEE . VHRMERA BN, B
FRATSELPMLT., Stanford, U.C. Berkley, C.M.U. 25t R4 M k2R F
MBS TRFRT. AR, BRIERG. HHEERSH., BEE,
GERE, BATR. BRY. EF5ME. BEEFSEAETENEL
TRTROZORE, MESASEa—ANYAESRITEZT. ANE=
TEMAZE, AREHSHRHIUETRERA . 15X R B 1§14 H K /E
HITE5IZ T, EEUWBETEVRENERF RS ETMAE,

BUBHIEE . RMEEM . —MAFEE . HOFER. BENRE, X
SHRRERNOESE THRENRIE, BERIMIGERRRERE, MRRN
BRERBMNEBX LB ERHEERB . A0 HIR R RN E %R
FHIRM . FEARWEEMAEE T RITHN TR B BEINRS FHRE, &
TIEBR R AN T

BT HR4 . hzedu@hzbook.com
BARETE: (010) 68995265

Bk A Mt : CRTHRBRXE T EREELS
HRBUZWAS : 100037

ERESERS
(Hetk RE BT)
E H BEE L EH
5 # EF EZE
FHE FWRR Fa¢
B &K KA
F#E ZivE Emwde
AR APEFR B
MOE A2 8 2R

LS

£ E M
X B &
WmAF
RCES
&9
EFEN
WA 4=

Preface

Experience has shown that the best way to leamn the details of how an operat-
ing system (OS) works is to experiment with it—to read, modify, and enhance
its code. However, OS software, by its nature, must be carefully constructed.
This is because it directly controls the hardware used by all of the processes
and threads that execute on it. As a result, experimenting with OS code can be
difficult, since an experimental version of the OS might disable the test ma-
chine. This laboratory manual provides you with a leaming path for studying the
Linux kernel with as little risk as possible. By learing about the Linux kernel in
this way, you will develop a technique by which you can learn and experiment
with other kemels as well. Consider this leaming path to be a graduated set of
exercises. First, you will learn to inspect various aspects of the OS intemal state
without changing any code. Second, you will extend the OS by writing new
code to read (but not write) kemel data structures. Third, you will reimplement
existing data structures. Finally, you will design and add your own functions and
data structures to the Linux kemnel.)

The Linux kemnel is written in the C programming language. Therefore you need
to be relatively proficient in using C before you can study the kernel. If you
know C++, then you will not have difficulty understanding the source code,
though when you add or change parts of the kemel code you will not be able
to use objects.

This manual is designed as a companion to a general OS textbook. It consists of
two parts. Part 1 offers an overview of the Linux design. If you are using this
manual at the beginning of your first OS course, you might discover that Part 1
discusses several topics that are new to you. However, work your way through
it to get a feeling for how Linux is built. It gives the “big picture” but not many
details. Then go back to Part 1 as needed as you work the exercises.

Part 2 consists of a dozen laboratory exercises that help you to learn to use
Linux. Each exercise is a self-contained unit consisting of the following sections:

= |ntroduction
= Problem Statement
= Attacking the Problem

The exercises link the general concepts and the Linux details. Each begins with
an introduction that explains Linux concepts and details relevant to the exercise.
The introduction explains how the generic concepts that you will have learned
in lecture and textbooks are realized in Linux. The next part of the exercise pre-
sents the problem on which you will be working. It includes detailed Linux-spe-
cific information that you need to solve the problem. Sometimes, a quick
review of the pertinent parts of Part 1 will help you to frame the work of the ex-
ercises before you dive into the details.

Your school's laboratory probably has already been set up as a Linux lab. For
you to solve most of the exercises in this manual, the laboratory administrator
will provide you with a copy of the Linux source code and superuser permission
to create new versions of the OS. Do not abuse your privilege as a superuser!
You need this privilege in order to modify the kernel, but you must not use it
for other purposes. This manual includes a CD-ROM, containing the Linux
source code, that you can use to install Linux on your own computer.

Good luck with your study of operating systems. | hope that this exercise man-
ual is a valuable learning tool for exploring OS concepts in Linux.

TO THE INSTRUCTOR

Today, abstraction is the basis of most software that is written—in the classroom
or in practice. Students are taught to think of software solutions in terms of ob-
jects, components, threads, messages, and so on. This perspective teaches
them to leverage the power of the hardware to solve increasingly complex

" tasks. In this way, they reduce programming time while reusing lower-level ab-
stractions. At the bottom of all of these abstractions is the operating system—
processes and resources (and sometimes threads). Application software and
middleware use these OS abstractions to create their own higher-level abstrac-
tions. These range from accounting packages, spreadsheets, and missile track-
ers to windows, databases, objects, components, messages, and continuous
media streams.

This trend toward the heavy use of abstraction prompts some to argue that OSs
are no longer worthy of serious study, since they are largely transparent to the
application programmers working at higher layers of abstraction. However, the
0S s still fundamental because its design and implementation are the basis of
the design and implementation of all of the other abstractions. Programmers
will always be able to write better middleware and application programs if they
understand how OSs work. Moreover, the need for people who understand
basic OS technology remains, whether they are to write drivers for new devices,
to create new microkernel servers, or to provide new systems capable of effi-
ciently handling evolving requirements such as continuous media.

Typically an OS instructor has to decide whether an OS course should focus on
issues and theory or provide an environment in which students can experiment
with OS code. The 1991 (and draft 2001) IEEE/ACM undergraduate course
recommendation describes a course that consists of a substantial amount of
time spent on issues, but also includes a significant laboratory component. Even
though the trend is toward courses based on conceptual materials, students
and instructors seem to agree that hands-on experience is invaluable in learn-
ing about OSs. Many courses attempt to follow the |IEEE/ACM lead by dividing
the course into lecture and laboratory components, with the lecture component
focusing on issues and theory and the laboratory component providing some
form of hands-on exercises.

The IEEE/ACM recommendation supports the idea that the laboratory compo-
nent should allow students to learn how to use the OS mechanisms, specifically
by focusing on the OS application programming interface (API) as the primary
mechanism for experimentation. The philosophy behind this approach is that
students must learn how to use an OS before they can really understand how

to design one. This philosophy drives a companion book on programming
Windows NT via the Win32 API [Nutt, 1999] and one on laboratory exercises
[Nutt, 2000].

However, in a late 1998 survey of 78 universities conducted by Addison-
Wesley, 43 indicated that they teach OS internals in the introductory OS course.
Of these 43, 26 use a variant of UNIX as the target OS, 13 use Linux, 10 use
an unspecified version of UNIX, and 3 use MINIX. Eight said that they use some
other OS as the subject system (such as Nachos), and the remaining 9 did not
specify the OS that they use. The survey clearly showed that a significant frac-
tion of the community teaches OS interals as a component of an introductory
OS class, despite the IEEE/ACM recommendation and despite the heavy use of
conceptual OS textbooks. It also showed that most of these courses use two
books: a traditional OS theory book (such as [Silberschatz and Galvin, 1998] or
[Nutt, 2000]) and a reference book (such as [Stevens, 1993], [McKusick, et al.,
1996], or [Beck, et al., 1998]). Of course, no single-term undergraduate course
can possibly cover all of the material in both a theory book and a book that de-
scribes an entire OS. The lack of a good laboratory manual forces the instructor
to have students buy a supplementary book that contains much more informa-
tion than they will have time to leam in a single academic term. Further, the in-
structor will have to learn all of the material in both books, as well as learn the
subject OS, derive a suitable set of exercises, and provide some form of guid-
ance through the OS reference materials so that the students can solve the
exercises. :

This textbook is a laboratory manual of Linux intermnal exercises. It complements
an OS theory book by providing a dozen specific exercises on Linux internals
that illustrate how theoretical concepts are implemented in Linux. The instructor
does not need to become a “complete” Linux kemel expert or derive a set of
exercises (either with full documentation for the exercise or with pointers to ap-
propriate sections in a supplementary reference book). Instead, the instructor,
lab assistant, and students can use this manual as a self-contained source of
background data and exercises to study how concepts are implemented. Thus
the less expensive laboratory manual replaces a general reference book, while
providing focused information for a set of kemel internals exercises. For the stu-
dent who wants to understand related information that is not required in order
to solve the exercise, the background material for exercises provides pointers to
reference books (and the literature).

A single-semester OS course consists of 15 weeks of course material. In my ex-
perience, many undergraduate students have difficulty doing a substantial pro-
gramming exercise in less than one and a half to two weeks. This means that

my students have been able to complete perhaps six to eight programming as-
signments in a semester. This manual provides enough exercises to allow you
to choose a subset that best suits your students’ backgrounds and your prefer-
ences. Most of the exercises include options that allow you to vary the assign-
ments from term to term (thereby reducing the probability of public solutions

- from previous terms). As mentioned previously, my intention is to release fre-
quent editions of this manual. | expect that the new editions will have new ex-
ercises that require new solutions.

Also provided is a solution to each exercise. Thus more difficult exercises can
be chosen, and as necessary you can distribute parts of the solution that are
not published in the manual.

None of these exercises are as difficult as building a new kernel from scratch.
Rather, they emphasize having students study the existing Linux kemel by mod-
ifying or extending its components. The first ones are easy, and the background
material is comprehensive. Later exercises increase in difficulty, with decreasing
amounts of “handholding” information. Exercises 1 and 2 will ordinarily require
a week or less to complete, but the last third of the exercises are likely to re-
quire a couple of weeks each. If your students need extra practice with C pro-
gramming, you might carefully consider using Exercises 1 and 2 as tutorials.
This might require that you provide a little extra assistance, especially with the
concurrency elements of Exercise 2.

THE CD-ROM VERSION OF LINUX

Any hands-on study of an OS must commit to a particular version of the OS.
With the rapid evolution of Linux, Version 2.2.x will be out of date by the time
that the book is published. In an attempt to avoid the problem of the book and
the OS code being out of sync, | have included the source code for Version
2.2.14. This first edition of the manual was originally written for Version 2.0.36.
Then it was updated for Linux Version 2.2.12 just before it went into the publi-
cation cycle. As the book was going to the printer, | discovered that only 2.2.14
(and not 2.2.12) was available for distribution with the manual. Small differ-
ences exist between 2.2.12 and 2.2.14—generally in coding style rather than
content. However, some of these differences show up in a couple of exercises.
Specifically, watch for them in the virtual memory and scheduler parts of the
kernel code. | will correct them in the next edition. | decided that including a
complete 2.2.14 installation was better than the manual’s having no CD-ROM.
Though newer versions of the source code will be available when you use this
book, | encourage you to install this version on your laboratory machines so that
your students will have a software environment that is reasonably consistent

e [

with the manual. My best wish is that | will be able to release new editions of
the manual that roughly track the Linux releases; the next edition might use, for
example, Version 2.6.x.

ACKNOWLEDGEMENTS

xli

Preface

This manual represents years of effort—mine as well as other people’s—leaming
about Linux. | benefited considerably from the assistance, insight, and contribu-
tions of the teaching assistants for Computer Science 3753: Operating Systems
at the University of Colorado, namely: Don Lindsay, Sam Siewert, Ann Root, and
Jason Casmira. Phil Levis provided interesting and lively discussions of Linux
and the exercises. And when | first installed Linux on a machine, it worked,
though not as well as it did after Adam Griff polished the installation.

Many of the exercises derive from projects and exercises in the undergraduate
and graduate OS classes at the University of Colorado. In particular, Exercise 3
was created by Sam Siewert in spring 1996 for Computer Science 3753.
Exercise 4 takes some material from another exercise created by Sam Siewert.
Exercise 9 comes from a course project that Jason Casmira did in Computer
Science 5573 (the graduate OS class) in fall 1998. Exercise 10 was first de-
signed by Don Lindsay in fall 1995 and refined by Sam Siewert in spring 1996.
Exercise 1 also appears in my companion OS textbook [Nutt, 2000], and
Exercise 2 is an extension of another one that also appears in that book.
Exercises 11 and 12 resemble exercises for Windows NT that appear in another
of my manuals [Nutt, 1999]; Norman Ramsey created the original Windows NT
exercises.

Many reviewers helped make the manual much better than its original draft.
Richard Guy used the first public draft of the manuscript in a course at UCLA.
Paul Stelling (UCLA) did a careful reading of the draft, correcting errors and pro-
viding insight into good and bad aspects of it. Simon Gray (Ashland University)
provided particularly lucid and insightful comments on the exercises. The fol-
lowing also provided helpful comments that greatly improved the manual: John
Barr (Ithaca College), David Binger (Centre College), David E. Boddy (Oakland
University), Richard Chapman (Auburn University), Sorin Draghici (Wayne State
University), Sandeep Gupta (Colorado State University), Mark Holliday (Western
Carolina University), Kevin Jeffay (University of North Carolina at Chapel Hill),
Joseph J. Pfeiffer (New Mexico State University), Kenneth A. Reek (Rochester
Institute of Technology), and Henning Schulzrinne (Columbia University).

The Addison Wesley staff was very helpful in preparing this work. Molly Taylor
and Jason Miranda provided wide ranges of assistance in handling reviews and

otherwise supporting the early stages of development. Lisa Hogue finished the
process, particularly by saving the day by finding a version of the Linux source
code that could be distributedwith the book. Laura Michaels did her usual dili-
gent job in copy editing the work, Gina Hagen helped with production and
Helen Reebenacker was the production editor. Last, but not least, Maité Suarez-
Rivas, the acquisition editor, recognized the need for the book and relentlessly
pushed forward to make it happen.

All of these people helped to produce the content, but of course, any errors are
my responsibility.

Gary Nutt

Boulder, Colorado

(R RERER)
(UNIX3R 3% & Z 442)
(HHRXBHER%: AL ER)
CEEXY S &0
(ARBHERL)

(UNIX#4F £ %3kt)

(UNIX% #2313)

(CiEEmAT) (RFFR)
(CEAET L EN)
(CRAEZT#HE) (RBR2R)
(C+i kit #AE) (RFF2R)
€ YT EEY)

(C++Hs ;. M T2 3)

{Java #2 %3t F5])

{Java &% A7)

(Java R Fi%it#A2) (BREF3MK)
{ KB C++3 &)
(C++i&EE Wik it FigiL)
(C++HAEEHR)

(C++HBAETHR) (F251)
(Javatm 2 B4)

(Javate 2 B4) (F208)
(&T8H%)

(BB AR R84 & G 5 Rt)
GHEm) (RHEFIKR)
(B3) (RBF2R)

(3R 25 RB5%2) (REFIK)

(AR %)

GREX: TEAGG R4 ERE)
(Bt 42: JAVAEZT EA) (REFUR)
(Bt riz, TREGHEFTE) (BRFEFR)

Louden #/ 751#«{?% #/39.007T
Stevens 2/ &7 %i$/55.00C
Galli /4% % ¥/

Jie Wu #/5 4 £ §3%/30.00T
Tanenbaum /1% ¥ 8 5$/40.007C
Bach £/M4 %3 %i%/33.00C
Kernighan % #/Fk %8 %1%/24.00C
Pohl /& ¥ #/48007L
Hanson #/

Deitel 5 /8 7 m %1%/33.00C
Deitel % 3/ 7 W %35/22.00C
Petzold /[W ¥ % %/24.007C
Shtern /%7t %%/

Liang &/ X 4 %%/

Pohl %/ ‘

Deitel /3 k.l Fi&/

Lakos /%)7 It ¥/
Stroustrup &/ 7 & #%/48.007T
Eckel #/%) £ @ %%/39.007C
EckelZ/x| & %%/

Eckel £/% % LM E %/39.00
Eckel %/

Schneider % /%4 #%/28.007T
Guzdial &/

Parsons #/4& %% ¥/50.00C
West %/

Giarratano /¢ % %i$/49.00T
Haykin /% &H $iF/
Gamma % /3 % ¥%/35.00C
Schach /3% Jk.L F3§/38.00T
Pressman /4 % % i%/48.007C

(CRBEER)
(BBEZEIR) (RBETIR)
(HBLE) (RER2R)

(B Bk BABHRK)
(BB ZGHA) (RFBFRIMR)
(BEEFZAEA)

(€S 7231
(BBEEELZGARM)
(FHa2. MAESHK)
(HFiEH. BALHHR)
(AKX EM AR %R RE)
(FA7A2 Bkt)

CEH MBI ARERED
GHEREE5BHM) (RHF2R)
GHEMR L) (RHEF2R)
(RAFBEREHK)
(HMAAIEME) (R FH2R)
(HIEBIEL M%)

(ISDN. B-ISDN #i F 2 f=ATM) (& ¥ #41%)
AU % 5 R #A2)
(AR % R HAR B T4)

(R%) (REF2R)

(TCP/IP## M %1: HiX)

(TCP/IP#fi# %2: FI)

(TCP/IP# M %3: TCPE 41, HTTP,
NNTP#A=UNIX3 Hri)
{Internet3 K& 25) (R P FH20R)
(HBBEERBHEEZ) (RBEF2R)
(BEBFEF3])

(HAHEHIEEZE)
(CHEMAZEREY) (RERTR)
(FERHRE) (RHEFHIR)

Wiegers /1w #% 4 5/19.00T
Date /& W% %£/66.00T
Inmon ¥/ £ & # %%/25.007
Jiawei Han%¥ /78 91 %3%/39.00C
Silberschatz % &/# 4# ¥ %/49.007
Molina % /4 %4 # F§/45.00C
Stephens % /M7 2% F%/35.00L
Pratt % %//5 8% $35/20.00T
Gary ¥ /& /M Fi%/
Yarbrough & /4 # % % 15/49.007
Wolf £/7h £ % %4%/65.007C
Wilkinson 3/ &% % %/43.00C
Palmer /™% i%/20.007C
Comer /4%t B %%/40.00C
Peterson 3 Z/7+#74¢ %1%/49.007T
Mynbaev ¥ /% i & %/
Walrand % #/% £ # %i%/55.00C
Forouzan ¥ Z/#& 1. %#, ZHNER
/48.007T.

Stallings Z/42ft 3% % %/48.007C
Dean /1) 485 % %/65.007T
Dean /M 4% %¥%/15.00
Ramteke E/&5F Fif/

Stevens F/FC % FF,

4= K/ 45.007C
Wright/Stevens &/ § % FiF,
#HA A= #/78.007T

Stevens £/3 45 ¥F,

#HA4= 2/ 35.007C

Comer /3 3.1y ¥i%/18.007C
Shay /%4 & $#/40.00C
Garrete %/ % # &%

Bruce -/

Mandell % #/4 8% A& %/38.00C
Stair 5 & /5K 3k ¥ %/42.00C

(UNIXZREH L %A) (EHR)

(ARBAERG) (ESIR - F20R)

(BAETES: BALSM) (EXUR - H2R)
(CRAEZITET) (EHKR - F2R)

(C++iEF eyt FaigiL) (IR)

(AR ER) (ER)

(C++4mBRBA) (EMR - F2R)

(Javap A2 &4) (£ XK - FH2R)
(BHRBFAELER) (EIIR - Fai)
(o) (ER - F30)

(ATHEE) (EXR)

Gt X TELA@G R4 AR) (EIR)
(A TA2: Javaid 2 EH) (ESR - B40R)
(kA2 ERFGAEFE) (FEIR - F408)
(ARG EE) (ER)

(#EsH, BxERRA—C++iE2THRE) (ELMR)
(BIBERGFH) (EXR - BTR)
(HAEEZHARA) (ER - H30R)
(HBERLEI) (FIR)
(Bt Evk AL) (EUR)
CHEpUk R &4 FAMRH &) (R - F2R)
GHEmm R Faikit . B/ FE) (KR - $208)
(FHATHEAR R LEH) (IR - $20R)
(THRAATHIE: BR, Shb52) (ERK)
(M AR) (IR - F4ah8)
CGHAWBE B F E xR) (EH - B28)
CiBAE MKl) (SR - H288)
CGHEMR L) (EIR - F258)
(FraBiEME) (IR - F20R)

(R%ZE: AF - BHE - THAo L& L)
(FESR - $208)

Stevens %/39.00C
Tanenbaum #/48.00T
Sethi #/39.00
Kernighan/Ritchie &/
Stroustrup %/29.005T.
Kernighan/Pike #/22.007C
Eckel #/58.007

Eckel #/69.00C

Rosen #/59.007C

Brualdi #/35.007
Nilsson #/45.007C
Gamma ¥ #/38.007%
Schach #/51.007T
Pressman #/68.007T.
Satzinger % #/60.007T
Sahni #/66.007C

Date #/65.00
Silberschatz % %/65.005T.
Garcia-Molina ¥ #/42.007C
Hwang #/59.007C
Patterson 3 #/88.00T
Hennessy % #%/80.007C
Culler % #7/88.007C
Hwang % #/69.005C
Tanenbaum #/38.007T
Rogers % %/45.007C
Walrand #/32.007C
Peterson ¥ #/65.007C
Walrand ¥ #/64.007C
Perlman #/36.007C

B o 42 A At

(piERE)
(Linux#EtE A% AEE T)
(BURALREELR) (RFBF2UR)
(ARBHERL) (RBFH2R)
(C++R2FZITET) (HA4R)
(CERAZRET) (REF2R)

(RFRTER)
(AR IES:
(CGHE=#®$3])
(BEEFALBRA) (BREZIR)
(ass%) (RBE3IMR)

(A%se)

(¥ 2 M %%t)

(Rtb A2 ZRENHAF %) (BHESHK)
(BB M, k58 CrHETHRE)
(BBLEME FE54. CiETHR)
(RFBF2R)

(HEERARE) (REFER)
(BEERE, BAREME) (REZ2R)
(ATt vk 44)

(LAt s,)

(THRIATHE: R, shb52)
(HEPBH G HEARS) (F25)
(HEEELERE) (F208)

wAL &M) (REFH2R)

Aho F/F ¥ Fi§/

Nutt /15T # 5£/29.00T
NuttF/ XL T &/

Tanenbaum &/ & 2 %%/
Stroustrup &/ £ 7 & &/
Kemnighan/Ritchie &/# & X %%
/28.007T

Kernighan/Pike /& 7 # #/20.00C
Sethi F/& F & F%/45.00L
Sipser /3K £ 5 $i%/30.00T
Rosen &/ & 3L ¥1%/75.00C
Brualdi %/ % £ %i%/38.00
Nilsson Z/#83=#% 4 %/30.007T
Hagan % #/#3% ¥i%/

Pressman E/# % $i%/

Sahni /33K 4 #%/49.00T

Weiss &/ 5 & %%/

Siblerschatz % &/# & & 5%/

O’ Neil ¥ F/A#E Fi%/55.007
Culler/¥ &/Z w8 Fi%/
Tanenbaum /x| T & %i%/46.007
Hwang/5 £/ik &35 $i2/49.007C
Rogers /% # 3% Fi§/55.00C
Forouzan % %/ % i} & %1%/68.00L

