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Introduction

This book is about the nature of concrete computation—the physical systems that
perform computations and the computations they perform. I argue that concrete
computing systems are a kind of functional mechanism. A functional mechanism is a
system of component parts with causal powers that are organized to perform a
function. Computing mechanisms are different from non-computing mechanisms
because they have a special function: to manipulate vehicles based solely on differ-
ences between different portions of the vehicles in accordance with a rule that is
defined over the vehicles and, possibly, certain internal states of the mechanism. I call
this the mechanistic account of computation.

When I began articulating and presenting the mechanistic account of computa-
tion to philosophical audiences over ten years ago, I often encountered one of
two dismissive responses. Response one: your view is obvious, well known, and
uncontroversial —utterly dull. Response two: your view is counterintuitive, implaus-
ible, and untenable—totally worthless. These were not the only responses. Plenty of
people engaged the substance of the mechanistic account of computation and
discussed its pros and cons. But these radical responses were sufficiently common
that they deserve to be addressed upfront.

If the mechanistic account elicited either one of these responses but not the other,
perhaps the mechanistic account would be at fault. But the presence of both
responses is encouraging because they cancel each other out, as it were. Those who
respond dismissively appear to be unaware that the opposite dismissive response is
equally common. If they knew this, presumably they would tone it down. For
although reasonable people may disagree about whether a view is true or false, it is
unreasonable to disagree on whether something is obviously true or obviously false. If
it’s so obvious, how can there be equally informed people who think the opposite is
obvious?

The first dismissive response—that the mechanistic account is so obvious that it’s
dull—seems to be motivated by something like the following reasoning. For the sake
of the argument, let’s assume along with many philosophers that computation is a
kind of symbol manipulation. There is an important distinction between the syntax
of symbols (and, more generally, their formal properties) and their semantics. To a
first approximation, syntactic (more generally, formal) properties are those that
determine whether a symbolic structure is well formed—they make the difference
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between ‘the puzzle is solvable’ and ‘puzzle the is solvable’; semantic properties are
those that determine what symbols mean—they make the difference between ‘i vitelli
dei romani sono belli’ in most languages, where it means nothing; in Latin, where it
means go, Vitellus, at the Roman god’s war cry; and in Italian, where it means the
calves of the Romans are good-looking. Most people find it intuitively compelling that
computations operate on symbols based on their formal or syntactic properties alone
and not at all based on their semantic properties. Furthermore, many philosophers
assimilate computational explanation and functional analysis: computational states
are often said to be individuated by their functional relations to other computational
states, inputs, and outputs. Therefore, computational states and processes are indi-
viduated functionally, i.e., formally or syntactically. Saying that computation is
mechanistic, as my account does, is just a relabeling of this standard view. Therefore,
the mechanistic account of computation is nothing new. Something like this reason-
ing is behind the first dismissive response. It is deceptively persuasive but, alas, it goes
way too fast.

A first problem is that physical systems don’t wear their syntactic (or formal)
properties on their sleeves. If the mechanistic account were based on syntactic
properties, it should begin with an account of syntactic properties that does not
presuppose the notion of computation. I don’t know of any such account, and
fortunately I don’t need one. For the mechanistic account of computation is pains-
takingly built by specifying which properties of which mechanisms are computa-
tional, without ever invoking the notion of syntax (or formal property). Thus, the
mechanistic account may provide ingredients for an account of syntax—not vice
versa (Chapter 3, Section 4).

A second problem is the implicit assimilation of functional analysis and compu-
tational explanation, which is pervasive in the literature. I reject such an assimilation
and argue that functional analysis provides a partial sketch of a mechanism
(Chapter 5), defend a teleological account of functional mechanisms (Chapter 6),
and argue that computational explanation is a specific kind of mechanistic explan-
ation (Chapter 7).

An additional issue is that computations are often individuated semantically—in
terms of functions from what is denoted by their inputs to what is denoted by their
outputs. And philosophers interested in computation are often interested in how
computation can explain cognition, which is usually assumed to deal in representa-
tions. After all, cognitive states and processes are typically individuated at least in
part by their semantic content. Thus, many philosophers interested in computation
believe that computational states and processes are individuated by their content in
such a way that at least part of their essence is semantic. I call this the semantic
account of computation. Therein lies the motivation for the second dismissive
response: since computation is essentially semantic and the mechanistic account of
computation denies this, the mechanistic account is obviously and horribly wrong.
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But the semantic account of computation has its own problems. For starters, the
notion of semantic property is even more obscure and more in need of naturalistic
explication than that of syntactic property. In addition, I argue that individuating
computations semantically always presupposes their non-semantic individuation,
and that some computations are individuated purely non-semantically. Therefore,
contrary to the second dismissive response, computation does not presuppose
representation (Chapter 3).

But if we reject the view that computation presupposes representation, we risk
falling into the view that everything performs computations—pancomputationalism
(Chapter 4). This is not only counterintuitive—it also risks undermining the foun-
dations of computer science and cognitive science. It is also a surprisingly popular
view. Yet, I argue that pancomputationalism is misguided and we can avoid it by a
judicious use of mechanistic explanation (Chapter 4).

The mechanistic account begins by adapting a mechanistic framework from the
philosophy of science. This gives us identity conditions for mechanisms in terms of
their components, their functions, and their organization, without invoking the
notion of computation. To this general framework, a mechanistic account of com-
putation must add criteria for what counts as computationally relevant mechanistic
properties. I do this by adapting the notion of a string of letters, taken from logic and
computability theory, and generalizing it to the notion of a system of vehicles that are
defined solely based on differences between different portions of the vehicles. Any
system whose function is to manipulate such vehicles in accordance with a rule,
where the rule is defined in terms of the vehicles themselves, is a computing system.
I explain how a system of appropriate vehicles can be found in the natural (concrete)
world, yielding a robust (nontrivial) notion of computation (Chapter 7).

After that, I develop this general mechanistic account by explicating specific
computing systems and their properties in mechanistic terms. I explicate the notion
of primitive computing components (Chapter 8), complex computing components
(Chapter 9), digital calculators (Chapter 10), digital computers (Chapter 11), analog
computers (Chapter 12), and neural networks (Chapter 13). After that, I return to
semantic properties under the guise of information processing (in several senses of
the term); I argue that processing information is a form of computation but com-
putation need not be a form of information processing (Chapter 14). I conclude the
book with the limits of physical computation. Once the relevant question is clarified
(Chapter 15), the evidence suggests that any function that is physically computable is
computable by Turing machines (Chapter 16).
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Towards an Account of Physical
Computation

1. Abstract Computation and Concrete Computation

Computation may be studied mathematically by formally defining computing sys-
tems, such as algorithms and Turing machines, and proving theorems about their
properties. The mathematical theory of computation is a well-established branch of
mathematics. It studies which functions defined over a denumerable domain, such as
the natural numbers or strings of letters from a finite alphabet, are computable by
algorithm or by some restricted class of computational systems. It also studies how
much time or space (i.e., memory) it takes for a computational system to compute
certain functions, without worrying much about the particular units of time involved
or how the memory cells are physically implemented.

By contrast, most uses of computation in science and everyday life involve concrete
computation: computation in concrete physical systems such as computers and
brains. Concrete computation is closely related to mathematical computation: we
speak of physical systems as running an algorithm or as implementing a Turing
machine, for example. But the relationship between concrete computation and
mathematical computation is not part of the mathematical theory of computation
per se and requires further investigation. This book is about concrete computation.
We will see in due course that questions about concrete computation are not neatly
separable from mathematical results about computation. The following mathemat-
ical results are especially crucial to our subsequent investigation.

The most important notion of computation is that of digital computation, which
Alan Turing, Kurt Gédel, Alonzo Church, Emil Post, and Stephen Kleene formalized
in the 1930s (see the Appendix for a sketch of the most relevant background and
results). Their work investigated the foundations of mathematics. One crucial ques-
tion was whether first order logic is decidable—whether there is an algorithm that
determines whether any given first order logical formula is a theorem.

Turing (1936-7) and Church (1936) proved that the answer is negative: there is no
such algorithm. To show this, they offered precise characterizations of the informal
notion of algorithmically computable function. Turing did so in terms of so-called
Turing machines—devices that manipulate discrete symbols written on a tape in
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accordance with finitely many instructions. Other logicians did the same thing—they
formalized the notion of algorithmically computable function—in terms of other
notions, such as A-definable functions and general recursive functions.

To their surprise, all such notions turned out to be extensionally equivalent, that is,
any function computable within any of these formalisms is computable within any of
the others. They took this as evidence that their quest for a precise definition of
‘algorithm,” or ‘effective procedure, or ‘algorithmically computable function, had
been successful. They had found a precise, mathematically defined counterpart to the
informal notion of computation by algorithm—a mathematical notion that could be
used to study in a rigorous way which functions can and cannot be computed by
algorithm, and therefore which functions can and cannot be computed by machines
that follow algorithms. The resulting view—that Turing machines and other equiva-
lent formalisms capture the informal notion of algorithm—is now known as the
Church-Turing thesis (more on this in Chapter 15). It provides the foundation for the
mathematical theory of computation as well as mainstream computer science.

The theoretical significance of Turing et al’s formalization of computation can
hardly be overstated. As Godel pointed out (in a lecture following one by Tarski):

Tarski has stressed in his lecture (and I think justly) the great importance of the concept of
general recursiveness (or Turing’s computability). It seems to me that this importance is largely
due to the fact that with this concept one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on the formalism
chosen (Gédel 1946, 84).

A standard Turing machine computes only one function. Turing also showed that
there are universal Turing machines—machines that can compute any function
computable by any other Turing machine. Universal machines do this by executing
instructions that encode the behavior of the machine they simulate. Assuming the
Church-Turing thesis, universal Turing machines can compute any function com-
putable by algorithm. This result is significant for computer science: you don’t need
to build different computers for different functions; one universal computer will
suffice to compute any computable function. Modern digital computers approximate
universal machines in Turing’s sense: digital computers can compute any function
computable by algorithm for as long as they have time and memory. (Strictly
speaking, a universal machine has an unbounded memory, whereas digital computer
memories can be extended but not indefinitely, so they are not quite unbounded in
the same way.)

The above result should not be confused with the common claim that computers
can compute anything. Nothing could be further from the truth: another important
result of computability theory is that most functions are not computable by Turing
machines (thus, by digital computers). Turing machines compute functions defined
over denumerable domains, such as strings of letters from a finite alphabet. There
are uncountably many such functions. But there are only countably many Turing
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machines; you can enumerate Turing machines by enumerating all lists of instruc-
tions. Since an uncountable infinity is much larger than a countable one, it follows
that Turing machines (and hence digital computers) can compute only a tiny portion
of all functions (over denumerable domains, such as natural numbers or strings of
letters).

Turing machines and most modern computers are known as (classical) digital
computers, that is, computers that manipulate strings of discrete, unambiguously
distinguishable states. Digital computers are sometimes contrasted with analog
computers, that is, machines that manipulate continuous variables. Continuous
variables are variables that can change their value continuously over time while
taking any value within a certain interval. Analog computers are used primarily to
solve certain systems of differential equations (Pour-El 1974; Rubel 1993).

Classical digital computers may also be contrasted with quantum computers
(Nielsen and Chuang 2000). Quantum computers manipulate quantum states called
qudits (most commonly binary qudits, or qubits). Unlike the computational states of
digital computers, qudits are not unambiguously distinguishable from one another.
This book will focus on classical (i.e., non-quantum) computation.

The same entities studied in the mathematical theory of computation—Turing
machines, algorithms, and so on—are said to be implemented by concrete physical
systems. This poses a problem: under what conditions does a concrete, physical
system perform a computation when computation is defined by an abstract mathem-
atical formalism? This may be called the problem of computational implementation.

The problem of computational implementation may be formulated in a couple of
different ways, depending on our ontology of mathematics. Some people interpret
the formalisms of computability theory, as well as other portions of mathematics, as
defining and referring to abstract objects. According to this interpretation, Turing
machines, algorithms, and the like are abstract objects.l

Abstract objects in this sense should not be confused with abstraction in the sense
of focusing on one aspect of something at the expense of other aspects. For instance,
we talk about the economy of a country and discuss whether it is growing or
contracting; we do so by abstracting away from many other aspects of the objects
and properties that constitute that country. I will discuss this notion of abstraction
(partial consideration) later. Now let’s deal with abstract objects.

Abstract objects are putative entities that are supposed to be non-spatial, non-
temporal, and non-causal. In other words, abstract objects have no spatial location,
do not exist through time, and are causally inert. The view that there are abstract
mathematical objects and that our mathematical truths describe such objects truly is
called platonism (Balaguer 2009; Linnebo 2011; Rodriguez-Pereyra 2011; Rosen 2012;

' E.g: ‘Computational models are abstract entities. They are not located in space and time, and they do
not participate in causal interactions’ (Rescorla 2014b, 1277, emphasis added).



