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Preface

This book mainly deals with nonlinear parabolic equations and sys-
tems of second order in higher dimensional domains. We shall dis-
cuss several initial-boundary value problems for quasilinear, nonli-
near parabolic equations and systems of second order equations with
smooth coefficients and measurable coefficients.

In Chapter I, we first introduce some properties of solutions for
parabolic equations of second order including the extremum princi-
ples, representation theorem and compactness principle of their solu-
tions. By using the extremum principles, the uniqueness theorem of
solutions for some initial-general boundary value problem is proved.
The properties of solutions for parabolic equations will be used in the
latter chapters.

In recent years, some initial-boundary value problems for non-
linear parabolic equations of second order with smooth coefficients
were investigated by some mathematicians, but they only discussed
the Dirichlet problem and initial-nonlinear regular oblique derivative
problem for the equations. In Chapter II, we first introduce the solva-
bility results of the above problems, and then consider the more ge-
neral initial-nonlinear irregular oblique derivative problem.

In Chapters III and IV, not only several initial-boundary value
problems for nonlinear nondivergent parabolic equations of second
order with measurable coeflicients, i.e. Cordes coefficients, but also
some initial-boundary value problems for nonlinear nondivergent
parabolic systems of second order equations with measurable coef-
ficients are investigated, which cannot be found in other books pub-
lished. Here we first give a priori estimates of solutions for the above
initial-boundary value problems and then prove their solvability by
the estimates of solutions and the method of parameter extension or
the Leray-Schauder theorem.

In Chapter V, we discuss some initial-boundary value problems for
linear and quasilinear parabolic equations of second order with other
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measurable coeflicients, i.e. VMO coefficients. We give a priori esti-
mates of solutions for the above problems, and prove the uniqueness
and existence of solutions for the problems, here we mainly construct
the foundational solution of the corresponding initial-boundary value
problems for linear parabolic equation of second order.

There are two characteristics of this book: one is that parabolic
equations are discussed in the nonlinear case, and the boundary con-
ditions include the irregular oblique derivative case, another is that
boundary value problems are almost considered in the case of mul-
tiply connected domains and several methods are used. We mention
that the methods in this book can be used to discuss the correspond-
ing boundary value problems for nonlinear elliptic equations in higher
dimensional domains, and some moving boundary problems in filtra-
tions, gas dynamics, elastico-plastic mechanics can be handled by
using the results as stated in this book.

The great majority of the contents originates in investigations
of the authors and his cooperative colleagues, and many results are
published here for the first time. After reading the volume, it can be
seen that many questions remain for further investigations.

Beijing
May 2001

Wen Guochun
Zou Benteng
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Chapter I
Properties of Solutions for Parabolic
Equations of Second Order

In this chapter, we mainly introduce some properties of solutions for
linear parabolic equations of second order including the extremum
principles, representation theorem and compactness principle of their
solutions. By using the extremum principles, the uniqueness and
stability of solutions for some initial-boundary value problems are
verified. Besides the existence of solutions of the Dirichlet problem
for linear parabolic equations is proved. The properties of solutions
for parabolic equations will be used in the following chapters.

1. Conditions of Linear and Nonlinear Parabolic
Equations of Second Order

Let Q be a bounded domain in R¥ with the boundary 99 € C’ﬁ (0<
p<1l) and Q@ = Q x I be a cylinder, here I = {0 < t < T}, T
is a positive constant, and 9Q = 0Q; U 0@ is called the parabolic
boundary of @, in which 8Q;, 8Q; are the bottom {z € 2, = 0} and
the lateral boundary {z € 9Q, t € I} of the domain @ respectively.

First of all, we consider the linear partial differential equation of
second order

N N
Ly = Z QijUz;z; + Zb,-uzi +cu—u=f in Q, (1.1)

1,j=1 =l

where the coefficients a;; = aij(z,t), b; = bi(x,t)(¢,7 = 1,---,N),
c=c(z,t), f(z,t) are known continuous functions in Q. The condition
of uniformly parabolic type for equation (1.1) is that the following
inequality holds

N N N
20 Y 162 < D ai&& < agt D 161 in Q, (1.2)
J=1 7,5=1 Jj=1

in which ¢o(0 < go <1) is a constant. If a;;,bi(¢,j = 1,---,N), ¢, f
satisfy

lInllgio (e < Koy = aujsbilisj =1,--+, N)se, f, (1.3)
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where Q* is any closed subdomain in @, a(0 < a < 1),k¢ are non-
negative constants and
N

llallcrogr) = llallcoogr) + X llaz:llcooge),
1=1
N

||a||c1o @)= ||a,||c,oo Q.)+Z||az,||coo @)’

llalle, . 2(@%) = llallcoogr) + llalla, , ,(@)

t —_
R Y Tap— la(z,t) a(y,T)|2’
Q* (=,t)#(y,7)€Q* |T — y|e+|t — T|*/

then we say that equation (1.1) satisfies Condition Cy. In this case, if
a function u(z,t) € ¢! (Q) satisfies equation (1.1) for every point

a,a/2
(z,t) € Q, then the function is called a classical solution of (1.1) in

Q.

Secondly, we consider the nonlinear parabolic equation of second
order

F(z,t,u, Dyu, D?u) —u; =0 in Q, (1.4)
namely
N N
Z QijUz;z; + Z biug; + cu —uz = f in Q, (1.5)

where Dyu = (ug,), Diu = (Ug;a; ), and
1 1
Gij = / FT”J' (:E’ t,u,p, TT)dTﬂ bi = / F‘I'Pi (.’13, t,u,7p, O)dT,
0 0

1

c=/ Fru(z,t,74,0,0)dr, f = —F(z,t,0,0,0),
0

ou S 8%

6.’131', w Ba:iaxj’

Suppose that (1.4) (or (1.5)) satisfies Condition C, i.e. for ar-
bitrary functions u(z,t), u!(z,t), v?(z,t) € C» 2/2(9) n w2(Q),
F(z,t,u, Dyu, D?u) satisfies the condition

F(z,t,u', D;ut, D2u!) — F(z,t,u?, Dyu?, D*u?)

p=DzU,T=D3U,Pi= ivjzlv"'7N'

(1.6)
i Z Bijtng; + szuz, + ¢u,

%=1 =1
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1

where u = u! — 4?2 and

1 - 1
aij = /0 Fuz,;-tj (z,t,a,p, F)dr, b= /; Fu”i (@, 8,4, p, F)dr,

1
é :/ Fu(z,t,4,p,7)dr, a=u’+7(u'—u?), p=D,i, 7#=D2a,
||u||Wz Q) = /[u +Zu + Z umz +ut]dg;dt)1/2
=1 t,0=1
and a;;, bi, ¢, f satisfy the condition
N N N
20 |G Jaitigi<qp Y &1 0<qo<1, (L.7)
Jj=1 =1 j=1

N ~2
Supg i, =143 1
. — L L= [, Q] <k,
ol Ny an S0 < Foip WhAsk o

|aij| < ko, |bi| < ko, 4,5 =1,---, N, |&| < ko,

where qo, g1, ko, k1,p(> N + 2) are non-negative constants. More-
over, for almost every point (z,t) € Q and D2u € RNWN+1)/2
aij(z,t,u, Dyu, D2u), bi(z, t,u, D,u),é(z,t,u) are continuous in u €
R, D,u € RY. If the last two conditions in (1.8) are replaced by

Lp[giaa] < k07 1= 1,"'5Ns
B (1.9)
Ly[¢,Q] £ ko, p> N + 2, supg ¢ < o0,

then Condition C will be called Condition C’. If the first condition
in (1.8) is replaced by

N §2 : N -
i,j=1 Laig=1 %5 1 ~ lan Zizl Qi
sup <q1 < =i [ = i —— (1.10)
[ ax]? N — j? Supq PR

then Condition C’ will be called Condition C”. It is not difficult to
derive the following relation

Condition C C Condition C’ C Condition C".
The so-called Dirichlet problem (Problem D), initial-Neumann

problem (Problem N) and the initial-regular oblique derivative prob-
lem (Problem O) of equation (1.1), i.e. to find a continuous solution
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u = u(z,t) € CY 0/2(Q) N W2 1(Q) of (1.1) satisfying the initial con-
dition
u(z,0) = g(z), z €9, (1.11)

and the boundary conditions

u(z,t) = r(z,t), (z,t) € Q2 (Problem D), (1.12)
ﬂg:_i’—t) =7(z,t), (z,t) € 0Q2 (Problem N), (1.13)
ou(z,t)

o7 +o(z,t)u=7(2,t), (z,t)€0Q2 (Problem O), (1.14)

respectively, in which 7 and 7 are the unit vector and unit outward
normal at every point (z,t) € Q2 respectively, and g(z) in Q, r(z, t),
o(z,t), 7(x,t), cos(¥,) > 0 on 8Q; satisfy the conditions

Cllg(x), Q] < ko, Cil/z[r(w,t),an] < kg,
o(z,t) >0 on Q, CY 1/2[7'(:6 t),0Q2] < k2, (1.15)

Conyaln(@:1),8Q3] < ko, 1= o, cos(#, 1),

where a (0 < a < 1), ko, k2 are non-negative constants. There is no
harm in assuming that o(z) > 0 on dQ3 in (1.14), because otherwise
we can find a solution ¥(x,t) of the equation

N
Au—uy =0, ie. Zu“:izi —u; =0 in Q, (1.16)
=1

satisfying the boundary condition ¥(z,t) = 1 on 9Q, then the
v(z,t) = u(z,t)/¥(z,t) is a solution of the equation

Z AijVs,a; + Zb Vg, + 8V — vy = finQ (1.17)
3,7=1 g=1
satisfying the initial-boundary condition (1.11) and

ov(z,t)

57 ot ="7(z,1), (z,t) €6Qy, (1.18)
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in which
N

i)i =b; + Z[aij(ln \I’)zj + aji(ln \P):cj], f = f/‘Il,

=1

i=c +Z “'”J+Zb(1nx1»)z, (In¥); in Q,

1,3=1 =1

5(z,t)= —8[ln‘g_fc 1) o(z,t)>0, %(m,t)=;((::’?) on 9Q2,

here 9[ln ¥(z,t)]/87 > 0 on 8Q2 can be derived by Lemma 2.1 and
Theorem 2.4 below.

The solution u(z, t) of equation (1.5) with Condition C is indicated
a function u(z,t) € C;’g/z(Q) n W2HQ*), ie. w,uy, (i =1,--+,N)

€ 020 2(Q) (0 < a < 1), tg,; (i, = 1,-++,N),us € L2(Q*), and
u(z,t) satisfies equation (1.5) for almost every point (z,t) € @, in
which C%%(Q) = C(Q) and Q* is any closed subset in the domain Q.

In this case, the solution of (1.5) is called a generalized solution in Q.

If the linear equation (1.1) with Condition Cj satisfies ¢(z,t) <
0, f(z,t) > 0 and ¢(z,t) < 0, f(z,t) < 0 in Q, then we say that
equation (1.1) satisfies Condition Cj and Condition C; respec-
tively. Besides, equation (1.1) with Condition C and the condi-
tions ¢(z,t) < 0, f(z,t) > 0 for almost every point (z,t) € Q will
be denoted by Condition C*, and Condition C and the conditions
c(z,t) < 0, f(z,t) < 0 for almost every point (z,t) € Q will be
denoted by Condition C~, and the conditions corresponding to Con-
dition C" will be called Condition C"”* and Condition C”~. In the
next section, we shall prove the extremum principles of solutions for
equation (1.1) with above smooth coefficients and measurable coeffi-
cients.

2. Extremum Principles of Solutions for Parabolic
Equations of Second Order

We first prove some extremum principles of solutions for equation
(1.1) with Condition Cp, and then verify some extremum principles
of solutions for (1.1) with Condition C.
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2.1 Extremum principles of solutions for parabolic equa-
tions with continuous coefficients

Lemma 2.1 Suppose that equation (1.1) satisfies Condition Cy,
and u(z,t) is a continuous solution of (1.1) in@ Ifu(z,t) attains the
non-negative mazimum at a point P° = (2°,t°) € Q4 and u(zx,t) <
u(z9,t%) for (z,t) € Q, then

u(P°) — u(P)

> 0, 2.1
Pops  r(PY,P) 1)

where r(P°, P) = [E:- (m,—:c )2+ |t —t°)]'/2, P = (z,t) approaches
P° along a direction I, cos(I, @) > 0, @i is the outward normal at P°
on 0Q).

Proof We make an inner tangent ball S in @ with the tangent
point at P°, whose center is the point P! = (z!,1°) and its radius is
R > 0, and denote by 0S5 the boundary of the ball S. Consider the
auxiliary function

V(P) = e~ olr*+(t=t)?] _ g—aR? (2.2)

where r = |z — z!| = [N, (z; — 2142, a is an undetermined
positive constant. It is clear that V(P) > 0in S, and V(P) = 0 on
0S. Through the direct calculation, we obtain

N N
LV =" aijVew; + 3 biVe, +cV =V,
i,j=1 i=1

_CV_F_e—C![Tz'*'(t—tO)z] Z a;j (wl l)(ajj_w;‘)
1,j=1

N
—2a Z(aii + bi(z; — x71)) + 2a(t—1t%)].

Setting S = {|z — x| + |t — t°)? < R?, |z — z!|> > R2?/4}, and
choosing that « is large enough such that LV > 0 in S;, we make an
auxiliary function

W (P) = eV (P) + u(P) — u(P?).

Selecting the sufficiently small positive number € such that W (P) < 0
on SN {|z — !> = R?/4} and W(P) < 0 on 885, we can conclude
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W(P) < 0in S;. Otherwise, there exists an inner point P? of S; so
that W (P) attains the positive maximum at P2. According to the
property of maximum point for the function of several variables, we

have
W>0,cW<0, Wy, =0,i=1,---,N,

Wy =0, Eﬁj:l az‘ij,-mj <0 at P2

We can see LW < 0 at P2. However by the definition of W (P) we

have
LW = eLV(P) + Lu(P) — Lu(P°) > 0 at P2,

The contradiction shows that W(P) < 0 for P € S;. Noting that
V(P%) = 0, hence

u(P°) — u(P) > —€[V(P°) — V(P)] for P € ;.
Thus when P approaches P° along the outward normal 7, we get

. u(P% —u(P) v —oR?
- > =
PILH;O "0 Py 2 € o 2eaRe

>0.  (23)

Noting the condition limp(eg -, po(u(P°) — u(P))/r(P°, P) > 0,
cos(l,@) > 0, cos(l, ) > 0 at P°, where § is a tangent vector of 8Q;
at PY, from (2.3), it follows the inequality

lim —U(PO) — u(P) > cos(l,7) __lim ——U(PD) — u(P)
P(el)— PO r(PO’P) N ’ P(eit)—» PO T(POvP)
0y _
+ cos(l,8) _ lim M > 0,

Pleaspo r(P°%P)
i.e. (2.1) holds.

Lemma 2.2 Suppose that equation (1.1) satisfies Condition Cy ,
and u(z,t) is a continuous solution of (1.1) in Q. If u(x,t) attains the
non-positive minimum at a point P° = (z°,1°) € 8Q, and u(z,t) >
u(z%,t%) for (z,t) € Q, then

o u(P%) — u(P)

0 :
p—»po  r(POP) <% (2.4)

where P = (z,t) approaches P° along a direction [, cos(l_: n) > 0,7
and r(P°, P) are defined as in (2.1).
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Proof Put v(P) = —u(P), it is not difficult to see that v(P) pos-
sesses the property of u(P) in Lemma 2.1. By using (2.1), we obtain

(P —u(P) _ . (P —u(P)
PR P e et

On the basis of Lemmas 2.1 and 2.2, it is easy to derive the fol-
lowing corollary.

Corollary 2.3 Let S be a ball in Q.

(1) If u(z,t) is a continuous solution of equation (1.1) with Condi-
tion Cg in Q, and u(x,t) does not take the non-negative mazimum at
the inner point of S, then u(z,t) attains the non-negative mazimum
at the south pole or north pole of 8S.

(2) If u(z,t) is a continuous solution of equation (1.1) with Condi-
tion Cg in @, and u(x,t) does not take the non-positive minimum at
the inner point of S, then u(z,t) attains the non-positive minimum
at the south pole or north pole of 8S.

Next, we shall prove the maximum principle and minimum prin-
ciple of solutions for equation (1.1) with some conditions.

Theorem 2.4 Suppose that equation (1.1) satisfies Condition Cg
or Condition Cy , and u(z,t) is a continuous solution of (1.1) in Q. If
u(z,t) attains the non-negative marimum or non-positive minimum
at an inner point P° = (2°,1%) of Q respectively, then

u(z, t) = w(2% 1) = u(P% in Qp = {(z,t) |z € Q,0<t <t}

Proof We first prove that if u(z,t) = u(P) takes the non-negative
maximum u(P°) at an inner point (z*,t*) of Q;o, then u(P) = u(P")
on the point set Q, = Q¢ N {t = t*}, the ¢t-coordinates of which are
equal to t*. Otherwise, there exists a point P’ = (z/,t*) € Q. such
that u(P') < u(P?). Denote Eg = {(z,t*) | u(z,t*) = u(P?), (z,t*) €
Q¢ }, it is obvious that Ej is a closed set in Q.. Thus it is not difficult
to find a ball on t = t* with the center in @, which is tangent to an
inner point P! = (21,t*) in Q, and P! € Ej such that u(P) < u(P?)
in the ball. By means of Lemma 2.1, we can see that du/0n > 0 at
P!, On the other hand, we have du/dz; = 0(i = 1,---,N) at Pl
This contradiction proves that u(P) = u(P!) on Q..



