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To Professor Mark Kac



Preface to the second edition

The most important revisions in this edition are: (1) enlargement of the
treatment of p-adic functions in Chapter IV to include the Iwasawa logarithm
and the p-adic gamma-function, (2) rearrangement and addition of some
exercises, (3) inclusion of an extensive appendix of answers and hints to the
exercises, the absence of which from the first edition was apparently a source
of considerable frustration for many readers, and (4) numerous corrections
and clarifications, most of which were proposed by readers who took the
trouble to write me. Some clarifications in Chapters IV and V were also
suggested by V. V. Shokurov, the translator of the Russian edition. I am
grateful to all of these readers for their assistance. I would especially like to
thank Richard Bauer and Keith Conrad, who provided me with systematic
lists of misprints and unclarities.

I would also like to express my gratitude to the staff of Springer-Verlag
for both the high quality of their production and the cooperative spirit with

which they have worked with me on this book and on other projects over the
past several years.

Seattle, Washington N. I K.
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Preface to the first edition

These lecture notes are intended as an introduction to p-adic analysis on the
elementary level. For this reason they presuppose as little background as possi-
ble. Besides about three semesters of calculus, I presume some slight exposure to
more abstract mathematics, to the extent that the student won't have an adverse
reaction to matrices with entries in a field other than the real numbers, field
extensions of the rational numbers, or the notion of a continuous map of topolog-
ical spaces.

The purpose of this book is twofold: to develop some basic ideas of p-adic
analysis, and to present two striking applications which, it is hoped, can be as
effective pedagogically as they were historically in stimulating interest in the
field. The first of these applications is presented in Chapter 11, since it only
requires the most elementary properties of Q@,; this is Mazur’s construction by
means of p-adic integration of the Kubota— Leopoldt p -adic zeta-function, which
“*p-adically interpolates’’ the values of the Riemann zeta-function at the negative
odd integers. My treatment is based on Mazur’s Bourbaki notes (unpublished).
The book then returns to the foundations of the subject, proving extension of the
p-adic absolute value to algebraic extensions of Q,, constructing the p-adic
analogue of the complex numbers, and developing the theory of p-adic power
series. The treatment highlights analogies and contrasts with the familiar con-
cepts and examples from calculus. The second main application, in Chapter V, is
Dwork’s proof of the rationality of the zeta-function of a system of equations
over a finite field, one of the parts of the celebrated Weil Conjectures. Here the
presentation follows Serre’s exposition in Séminaire Bourbaki.

These notes have no pretension to being a thorough introduction to p-adic
analysis. Such topics as the Hasse— Minkowski Theorem (which is in Chapter 1
of Borevich and Shafarevich’s Number Theory) and Tate’s thesis (which is also
available in textbook form, see Lang’s Algebraic Number Theory) are omitted.

ix



Preface

Moreover, there is no attempt to present results in their most general form. For
example, p-adic L-functions corresponding to Dirichlet characters are only dis-
cussed parenthetically in Chapter II. The aim is to present a selection of material
that can be digested by undergraduates or beginning graduate students in a
one-term Ccourse.

The exercises are for the most part not hard, and are important in order to
convert a passive understanding to a real grasp of the material. The abundance of
exercises will enable many students to study the subject on their own, with
minimal guidance, testing themselves and solidifying their understanding by
working the problems.

p-adic analysis can be of interest to students for several reasons. First of all, in
many areas of mathematical research—such as number theory and representation
theory—p -adic techniques occupy an important place. More naively, for a stu-
dent who has just learned calculus, the ‘‘brave new world’’ of non- Archimedean
analysis provides an amusing perspective on the world of classical analysis.
p-adic analysis, with a foot in classical analysis and a foot in algebra and number
theory, provides a valuable point of view for a student interested in any of those

areas.

I would like to thank Professors Mark Kac and Yu. I. Manin for their help
and encouragement over the years, and for providing, through their teaching and
writing, models of pedagogical insight which their students can try to emulate.

Logical dependence of chapters

Cambridge, Massachusetts
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CHAPTER 1

p-adic numbers

1. Basic concepts

If X is a nonempty set, a distance, or metric, on X is a function d from pairs
of elements (x, y) of X to the nonnegative real numbers such that

(1) d(x,y) = 0if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x,y) < d(x,z) + d(z,y) forall ze X.

A set X together with a metric d is called a metric space. The same set X can
give rise to many different metric spaces (X, d), as we’ll soon see.

The sets X we’ll be dealing with will mostly be fields. Recall that a field F
is a set together with two operations + and - such that F is a commutative
group under +, F — {0} is a commutative group under -, and the distributive
law holds. The examples of a field to have in mind at this point are the field
Q of rational numbers and the field R of real numbers.

The metrics d we’ll be dealing with will come from norms on the field F,
which means a map denoted | | from F to the nonnegative real numbers
such that

(1) |lx] = 0if and only if x = 0.
@) lx-yI = lI>1-1»l-
G) llx+yll < [lx] + 120

When we say that a metric d “comes from” (or “is induced by’’) a norm
[ I, we mean that d is defined by: d(x, y) = |x — y|. It is an easy exercise
to check that such a d satisfies the definition of a metric whenever || | is a
norm.

A basic example of a norm on the rational number field Q is the absolute
value |x|. The induced metric d(x, y) = |x — y| is the usual concept of
distance on the number line.



I p-adic numbers

My reason for starting with the abstract definition of distance is that the
point of departure for our whole subject of study will be a new type of
distance, which will satisfy Properties (1)<(3) in the definition of a metric
but will differ fundamentally from the familiar intuitive notions. My reason
for recalling the abstract definition of a field is that we’ll soon need to be
working not only with Q but with various ‘“extension fields’” which contain Q.

2. Metrics on the rational numbers

We know one metric on Q, that induced by the ordinary absolute value. Are
there any others? The following is basic to everything that follows.

Definition. Let pe{2,3,5,7,11,13, ...} be any prime number. For any
nonzero integer g, let the p-adic ordinal of a, denoted ord, a, be the highest
power of p which divides q, i.e., the greatest m such that a = 0 (mod p™).
(The notation @ = b (mod c) means: ¢ divides a — b.) For example,

ords 35 = 1, ordg 250 = 3, ord; 96 = 5, ord; 97 = 0.
(If a = 0, we agree to write ord, 0 = c0.) Note that ord, behaves a little
like a logarithm would: ord,(a,a;) = ord, a, + ord, a,.
Now for any rational number x = a/b, define ord, x to be ord, a —

ord, b. Note that this expression depends only on x, and not on a and b,
i.e., if we write x = ac/bc, we get the same value for ord, x = ord, ac —

ord, bc.

Further define a map | |, on Q as follows:

if x # 0;

pord,x’

0, if x=0.

x|, =

Proposition. | |, is a norm on Q.
ProOF. Properties (1) and (2) are easy to check as an exercise. We now verify
3).

If x=0o0ry =0, orif x + y = 0, Property (3) is trivial, so assume x, y,
and x + y are all nonzero. Let x = a/b and y = c/d be written in lowest
terms. Then we have: x+ y = (ad + bc)/bd, and ordy(x + y) =
ord,(ad + bc) — ord, b — ord, d. Now the highest power of p dividing the
sum of two numbers is af least the minimum of the highest power dividing
the first and the highest power dividing the second. Hence

ord,(x + y) = min(ord, ad, ord, bc) — ord, b — ord, d
= min(ord, @ + ord, d, ord, b + ord, ¢) — ord, b — ord, d
= min(ord, a — ord, b, ord, ¢ — ord, d)
= min(ord, x, ord, y).
Therefore, |x + y], = p~%**¥) < max(p~"%*, p~*%¥) = max(|x|,, |¥|,),
and this is < |x|, + |y],. O
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2 Metrics on the rational numbers

We actually proved a stronger inequality than Property (3), and it is this
stronger inequality which leads to rhe basic definition of p-adic analysis.

Definition. A norm is called non-Archimedean if |x + y| < max(]|x|, | »[)
always holds. A metric is called non-Archimedean if d(x,y) <
max(d(x, z), d(z, y)); in particular, a metric is non-Archimedean if it is
induced by a non-Archimedean norm, since in that case d(x,y) =
Ix =yl = I(x = 2) + (z = y)| < max(|x — z|, |z — y|) = max(d(x, 2),
d(z, y)):

Thus, | |, is @ non-Archimedean norm on Q.

A norm (or metric) which is not non-Archimedean is called Archimedean.
The ordinary absolute value is an Archimedean norm on Q.

In any metric space X we have the notion of a Cauchy sequence
{a,, a;, a;, ...} of elements of X. This means that for any ¢ > 0 there exists
an N such that d(a,, a,) < ¢ whenever bothm > Nandn > N.

We say two metrics d; and d, on a set X are equivalent if a sequence is
Cauchy with respect to d, if and only if it is Cauchy with respect to d,. We
say two norms are equivalent if they induce equivalent metrics.

In the definition of | |,, instead of (1/p)°"%* we could have written p°*%*
with any p € (0, 1) in place of 1/p. We would have obtained an equivalent
non-Archimedean norm (see Exercises 5 and 6). The reason why p = 1/p is
usually the most convenient choice is related to the formula in Exercise 18
below.

We also have a family of Archimedean norms which are equivalent to
the usual absolute value | |, namely | |* when 0 < « < 1 (see Exercise 8).

We sometimes let | |, denote the usual absolute value. This is only a
notational convention, and is not meant to imply any direct relationship
between | |, and | |,.

By the “trivial” norm we mean the norm | | such that |0] = O and
Ix|| =1 for x # 0.

Theorem 1 (Ostrowski). Every nontrivial norm | | on Q is equivalent to | |,
Jfor some prime p or for p = co.

PROOF. Case (i). Suppose there exists a positive integer n such that ||n| > 1.
Let ny be the least such n. Since |n,| > 1, there exists a positive real number
« such that ||n,| = n,". Now write any positive integer n to the base #,, i.e.,
in the form

n=a,+ an, + a;n® + -+ + an,’, where0 < a, < n, and a, # 0.
Then

nll < llaoll + lawmol + laano®| + - - - + Jano’|
= |lao|l + [larll-mo®* + |laall-no%* + - - - + [lac]|-mo>=.



I p-adic numbers

Since all of the g, are <n,, by our choice of n, we have [la;| < 1, and hence
Inl <1 4 ne® + ne® + -+ - + ny*
< no®™(l + no™ + ng2* + -+ - + ng**)

we[ 3 ey,

i=0

A

because n > n,°. The expression in brackets is a finite constant, which we
call C. Thus,
[n| < Cn* forallm=1,2,3,....

Now take any n and any large N, and put n”¥ in place of n in the above
inequality; then take Nth roots. You get

|n] < ¥/ Cn=.

Letting N — co for n fixed gives |n| < n°.

We can get the inequality the other way as follows. If n is written to the
base n, as before, we have ng*! > n = ne®. Since |n§*!| = |n + n§** — n|| <
[n] + [|n§** — n], we have

Inll = [ns*t] — [m5** — n|

> n&s+l)¢ i (nf)-tl - n)a’

since |n§*!| = [no]**?, and we can use the first inequality (i.e., [|n]] < »%)
on the term that is being subtracted. Thus,

In]| = n§*V* — (A5** — ne*)* (since n = ny)

- n:,s+1>~[1 - (1 = l)']
no
= C'n®
for some constant C’ which may depend on 7, and « but not on n. As before,
we now use this inequality for »n¥, take Nth roots, and let N — oo, finally
getting: |n| > n=.

Thus, || = n°. It easily follows from Property (2) of norms that |x| =
|x]* for all x € Q. In view of Exercise 8 below, which says that such a norm is
equivalent to the absolute value | |, this concludes the proof of the theorem
in Case (i).

Case (ii). Suppose that ||n| < 1 for all positive integers n. Let n, be the
least n such that ||n]| < 1; n, exists because we have assumed that | | is
nontrivial.

n, must be a prime, because if n, = n,-n, with n; and n; both <n,, then
lnill = llnal = 1,andso |me]l = |y - ||na] = 1.So let p denote the prime n,.

We claim that |g|| = 1 if g is a prime not equal to p. Suppose not; then
llgll < 1, and for some large N we have |g¥| = |q|¥ < }. Also, for some
large M we have ||p™|| < 4. Since p* and gV are relatively prime—have no

4



2 Metrics on the rational numbers

common divisor other than 1 —we can find (see Exercise 10) integers n and m
such that: mp™ + ng” = 1. But then
1= 1] = [mp* + ng"| < [mp*| + Ing"| = Im| |p*| + In| lg"l.

by Properties (2) and (3) in the definition of a norm. But ||m|, |n| < 1, so
that
L<|pMl+ l¢"l <3 +3=1,

a contradiction. Hence |g| = 1.
We're now virtually done, since any positive integer a can be factored into
prime divisors: a = p,"ip,'s---p,> Then |a| = |ps|*-|pal®2- - - | £e)*

But the only | p,|| which is not equal to 1 will be || p|| if one of the p/’s is p. Its
corresponding &; will be ord, a. Hence, if we let p = | p| < 1, we have

lall = por%.

It is easy to see using Property (2) of a norm that the same formula holds with
any nonzero rational number x in place of a. In view of Exercise 5 below,
which says that such a norm is equivalent to | |;, this concludes the proof
of Ostrowski’s theorem. O

Our intuition about distance is based, of course, on the Archimedean
metric | |,. Some properties of the non-Archimedean metrics | |, seem very
strange at first, and take a while to get used to. Here are two examples.

For any metric, Property (3): d(x, y) < d(x, z) + d(z, y) is known as
the “triangle inequality,” because in the case of the field C of complex
numbers (with metric d(a + bi, c + di) =V/(a — ¢)® + (b — d)?) it says
that in the complex plane the sum of two sides of a triangle is greater than
the third side. (See the diagram.)

d(x, z)
d(z y)

d(x. y) y

Let’s see what happens with a non-Archimedean norm on a field F. For
simplicity suppose z = 0. Then the non-Archimedean triangle inequality says:
lx — y| < max(|lx], | »l). Suppose first that the *“sides” x and y have
different “length,” say | x| < | y||. The third side x — y has length

Ix = »lI < Ixl-
But
Iyl = Ix — (x = )| < max(|x], |*x — yl).
Since || y| is not < | x|, we must have || y|| < ||x — y|,andso || y| = [|x — y|.
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