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Introduction

Inequalities lie at the heart of a great deal of mathematics. G.H. Hardy
reported Harald Bohr as saying ‘all analysts spend half their time hunting
through the literature for inequalities which they want to use but cannot
prove’. Inequalities provide control, to enable results to be proved. They
also impose constraints; for example, Gromov’s theorem on the symplectic
embedding of a sphere in a cylinder establishes an inequality that says that
the radius of the cylinder cannot be too small. Similar inequalities occur
elsewhere, for example in theoretical physics, where the uncertainty principle
(which is an inequality) and Bell’s inequality impose constraints, and, more
classically, in thermodynamics, where the second law provides a fundamental
inequality concerning entropy.

Thus there are very many important inequalities. This book is not
intended to be a compendium of these; instead, it provides an introduc-
tion to a selection of inequalities, not including any of those mentioned
above. The inequalities that we consider have a common theme; they relate
to problems in real analysis, and more particularly to problems in linear
analysis. Incidentally, they include many of the inequalities considered in
the fascinating and ground-breaking book Inequalities, by Hardy, Littlewood
and Pdlya [HaLP 52|, originally published in 1934.

The first intention of this book, then, is to establish fundamental inequal-
ities in this area. But more importantly, its purpose is to put them in
context, and to show how useful they are. Although the book is very largely
self-contained, it should therefore principally be of interest to analysts, and
to those who use analysis seriously.

The book requires little background knowledge, but some such knowledge
is very desirable. For a great many inequalities, we begin by considering
sums of a finite number of terms, and the arguments that are used here lie
at the heart of the matter. But to be of real use, the results must be extended



2 Introduction

to infinite sequences and infinite sums, and also to functions and integrals.
In order to be really useful, we need a theory of measure and integration
which includes suitable limit theorems. In a preliminary chapter, we give a
brief account of what we need to know; the details will not be needed, at
least in the early chapters, but a familiarity with the ideas and results of
the theory is a great advantage.

Secondly, it turns out that the sequences and functions that we consider
are members of an appropriate vector space, and that their ‘size’, which
is involved in the inequalities that we prove, is described by a norm. We
establish basic properties of normed spaces in Chapter 4. Normed spaces
are the subject of linear analysis, and, although our account is largely self-
contained, it is undoubtedly helpful to have some familiarity with the ideas
and results of this subject (such as are developed in books such as Linear
analysis by Béla Bollobés [Bol 90] or Introduction to functional analysis by
Taylor and Lay [TaL 80]. In many ways, this book provides a parallel text
in linear analysis.

Looked at from this point of view, the book falls naturally into two unequal
parts. In Chapters 2 to 13, the main concern is to establish inequalities
between sequences and functions lying in appropriate normed spaces. The
inequalities frequently reveal themselves in terms of the continuity of certain
linear operators, or the size of certain sublinear operators. In linear analysis,
however, there is interest in the structure and properties of linear operators
themselves, and in particular in their spectral properties, and in the last four
chapters we establish some fundamental inequalities for linear operators.

This book journeys into the foothills of linear analysis, and provides a
view of high peaks ahead. Important fundamental results are established,
but I hope that the reader will find him- or herself hungry for more. There
are brief Notes and Remarks at the end of each chapter, which include
suggestions for further reading: a partial list, consisting of books and papers
that I have enjoyed reading. A more comprehensive guide is given in the
monumental Handbook of the geometry of Banach spaces [JoL 01,03] which
gives an impressive overview of much of modern linear analysis.

The Notes and Remarks also contain a collection of exercises, of a varied
nature: some are five-finger exercises, but some establish results that are
needed later. Do them!

Linear analysis lies at the heart of many areas of mathematics, includ-
ing for example partial differential equations, harmonic analysis, complex
analysis and probability theory. Each of them is touched on, but only to a
small extent; for example, in Chapter 9 we use results from complex analysis
to prove the Riesz-Thorin interpolation theorem, but otherwise we seldom
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use the powerful tools of complex analysis. Each of these areas has its own
collection of important and fascinating inequalities, but in each case it would
be too big a task to do them justice here.

I have worked hard to remove errors, but undoubtedly some remain.
Corrections and further comments can be found on a web-page on my per-
sonal home page at www.dpmms.cam.ac.uk
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Measure and integral

1.1 Measure

Many of the inequalities that we shall establish originally concern finite
sequences and finite sums. We then extend them to infinite sequences and
infinite sums, and to functions and integrals, and it is these more general
results that are useful in applications.

Although the applications can be useful in simple settings — concerning the
Riemann integral of a continuous function, for example — the extensions are
usually made by a limiting process. For this reason we need to work in the
more general setting of measure theory, where appropriate limit theorems
hold. We give a brief account of what we need to know; the details of the
theory will not be needed, although it is hoped that the results that we
eventually establish will encourage the reader to master them. If you are
not familiar with measure theory, read through this chapter quickly, and
then come back to it when you find that the need arises.

Suppose that 2 is a set. A measure ascribes a size to some of the subsets
of Q. It turns out that we usually cannot do this in a sensible way for all
the subsets of 2, and have to restrict attention to the measurable subsets of
Q2. These are the ‘good’ subsets of €2, and include all the sets that we meet
in practice. The collection of measurable sets has a rich enough structure
that we can carry out countable limiting operations.

A o-field ¥ is a collection of subsets of a set €2 which satisfies

(i) if (A;) is a sequence in ¥ then U2, A; € 3, and

(ii) if A € ¥ then the complement Q\ A € .

Thus

(iii) if (A;) is a sequence in ¥ then N2, A; € X.

The sets in X are called ¥-measurable sets; if it is clear what ¥ is, they
are simply called the measurable sets.

4
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Here are two constructions that we shall need, which illustrate how the
conditions are used. If (A;) is a sequence in ¥ then we define the upper limit
limA; and the lower limit limA;:

Then limA; and limA; are in ¥. You should verify that z € limA; if and
only if x € A; for infinitely many indices i, and that € limA; if and only
if there exists an index ig such that = € A; for all i > ig.

If Q2 is the set N of natural numbers, or the set Z of integers, or indeed
any countable set, then we take X to be the collection P(2) of all subsets of
Q. Otherwise, ¥ will be a proper subset of P(2). For example, if Q = R¢
(where R denotes the set of real numbers), we consider the collection of Borel
sets; the sets in the smallest o-field that contains all the open sets. This
includes all the sets that we meet in practice, such as the closed sets, the G
sets (countable intersections of open sets), the F, sets (countable unions of
closed sets), and so on. The Borel o-field has the fundamental disadvantage
that we cannot give a straightforward definition of what a Borel set looks
like — this has the consequence that proofs must be indirect, and this gives
measure theory its own particular flavour.

Similarly, if (X, d) is a metric space, then the Borel sets of X are sets in
the smallest o-field that contains all the open sets. [Complications can arise
unless (X, d) is separable (that is, there is a countable set which is dense in
X), and so we shall generally restrict attention to separable metric spaces.|

We now give a size (non-negative, but possibly infinite or zero) to each of
the sets in X. A measure on a o-field ¥ is a mapping p from ¥ into [0, 00|
satisfying

(i) u(@) =0, and

(ii) if (A;) is a sequence of disjoint sets in ¥ then p(U2, A;) = Y00, pu(Ai):
i is countably additive.

The most important example that we shall consider is the following. There
exists a measure A (Borel measure) on the Borel sets of R¢ with the property
that if A is the rectangular parallelopiped Hle(ai,bi) then A(A) is the
product Hle (b;—a;) of the length of its sides; thus A gives familiar geometric
objects their natural measure. As a second example, if €2 is a countable set,
we can define #(A), or |A|, to be the number of points, finite or infinite,
in A; # is counting measure. These two examples are radically different:
for counting measure, the one-point sets {z} are atoms; each has positive
measure, and any subset of it has either the same measure or zero measure.
Borel measure on R? is atom-free; no subset is an atom. This is equivalent
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to requiring that if A is a set of non-zero measure A, and if 0 < 8 < u(A)
then there is a measurable subset B of A with u(B) = S.

Countable additivity implies the following important continuity
properties:

(iii) if (A;) is an increasing sequence in ¥ then

(U2 4i) = lim p(4;).

[Here and elsewhere, we use ‘increasing’ in the weak sense: if ¢ < j then
A; C A If A; C Aj for @ < j, then we say that (A;) is ‘strictly increasing’.
Similarly for ‘decreasing’.]

(iv) if (A;) is a decreasing sequence in ¥ and p(A;) < oo then

p(NZ1A) = lim p(A;).

The finiteness condition here is necessary and important; for example,
if A; = [i,00) C R, then A(A4;) = oo for all i, but N2, A; = 0, so that
A(Ng2,A4;) =0.

We also have the following consequences:

(v) if A C B then u(A) < u(B);

(iv) if (A;) is any sequence in ¥ then (U2 A4;) < 372, u(Aq).

There are many circumstances where p(€2) < oo, so that p only takes
finite values, and many where p(€2) = 1. In this latter case, we can consider
1 as a probability, and frequently denote it by P. We then use probabilistic
language, and call the elements of ¥ ‘events’.

A measure space is then a triple (2, 3, u), where Q is a set, ¥ is a o-field of
subsets of €2 (the measurable sets) and p is a measure defined on ¥. In order
to avoid tedious complications, we shall restrict our attention to o-finite
measure spaces: we shall suppose that there is an increasing sequence (Cy)
of measurable sets of finite measure whose union is . For example, if ) is
Borel measure then we can take Cy = {x: |z| < k}.

Here is a useful result, which we shall need from time to time.

Proposition 1.1.1 (The first Borel-Cantelli lemma) If (A;) is a
sequence of measurable sets and > 0, (A;) < oo then p(limA;) = 0.

Proof For each i, u(limA4;) < 1(U;A;5), and (U2, A7) < 3772, u(Aj) — 0
as ¢ — 00. O

If u(A) = 0, A is called a null set. We shall frequently consider properties
which hold except on a null set: if so, we say that the property holds almost
everywhere, or, in a probabilistic setting, almost surely.
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1.2 Measurable functions

We next consider functions defined on a measure space (€2, %, ). A real-
valued function f is X-measurable, or more simply measurable, if for each
real « the set (f > a) = {z: f(z) > a} is in £. A complex-valued function
is measurable if its real and imaginary parts are. (When P is a probability
measure and we are thinking probabilistically, a measurable function is called
a random variable.) In either case, this is equivalent to the set (f € U) =
{: f(x) € U} being in ¥ for each open set U. Thus if ¥ is the Borel o-field
of a metric space, then the continuous functions are measurable. If f and g
are measurable then so are f + g and fg; the measurable functions form an
algebra M = M(Q, X, u). If f is measurable then so is |f|. Thus in the real
case M is a lattice: if f and g are measurable, then so are fV g = max(f, g)
and f A g = min(f,g).

We can also consider the Borel o-field of a compact Hausdorff space (X, 7):
but it is frequently more convenient to work with the Baire o-field: this is
the smallest o-field containing the closed Gy sets, and is the smallest o-field
for which all the continuous real-valued functions are measurable. When
(X, 7) is metrizable, the Borel o-field and the Baire o-field are the same.

A measurable function f is a null function if u(f # 0) = 0. The set N of
null functions is an ideal in M. In practice, we identify functions which are
equal almost everywhere: that is, we consider elements of the quotient space
M = M/N. Although these elements are equivalence classes of functions,
we shall tacitly work with representatives, and treat the elements of M as
if they were functions.

What about the convergence of measurable functions? A fundamental
problem that we shall frequently consider is ‘When does a sequence of mea-
surable functions converge almost everywhere?’ The first Borel-Cantelli
lemma provides us with the following useful criterion.

Proposition 1.2.1 Suppose that (f,) is a decreasing sequence of non-
negative measurable functions. Then f, — 0 almost everywhere if and only
if W((fr > €)NCx) — 0 as n — oo for each k and each € > 0.

Proof Suppose that (f,) converges almost everywhere, and that ¢ > 0.
Then ((f, > €) N Cy) is a decreasing sequence of sets of finite measure,
and if x € N, (f,, > €) N Cy then (fn(z)) does not converge to 0. Thus, by
condition (iv) above, u((f, > €) N Ck) — 0 as n — oc.

For the converse, we use the first Borel-Cantelli lemma. Suppose that the
condition is satisfied. For each n there exists N, such that u((fn, >
1/n)NCy) < 1/2".  Then since Y .- u((fn, > 1/n)NCp) < oo,
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p(@im((fy, > 1/n)NC,) = 0. But if x ¢ lim((fn, > 1/n)NCy) then

Corollary 1.2.1 A sequence (f) of measurable functions converges almost
everywhere if and only if

u(( sup | fm — fal >e)ﬂCk> —0 as N — o0
mn>N

for each k and each € > 0.

It is a straightforward but worthwhile exercise to show that if f(z) =
lim,, oo fn(z) when the limit exists, and f(z) = 0 otherwise, then f is
measurable.

Convergence almost everywhere cannot in general be characterized in
terms of a topology. There is however a closely related form of conver-
gence which can. We say that f, — f locally in measure (or in probability)
if u((|fn — fl >€)NCk) — 0 as n — oo for each k and each € > 0; similarly
we say that (fy) is locally Cauchy in measure if pu((|fm — fn| > €)NCx) — 0
as m,n — oo for each k and each € > 0. The preceding proposition, and an-
other use of the first Borel-Cantelli lemma, establish the following relations
between these ideas.

Proposition 1.2.2 (i) If (f,) converges almost everywhere to f, then (fn)
converges locally in measure.

(ii) If (frn) is locally Cauchy in measure then there is a subsequence which
converges almost everywhere to a measurable function f, and f, — f locally
i measure.

Proof (i) This follows directly from Corollary 1.2.1.

(ii) For each k there exists Nj such that u((|fm — fa| > 1/25)NCy) < 1/2F
for m,n > Nj. We can suppose that the sequence (Ny) is strictly increasing.
Let gr = fn,- Then p((lgrs1 — gkl < 1/2¥) N Cx) < 1/2%. Thus, by
the First Borel-Cantelli Lemma, p(lim((|grs1 — gx| > 1/2F) N Cy)) = 0.
But Tim(lgksr — g¢l > 1/25) N Ci) = Tm(lgss — gl > 1/2%). 1tz ¢
T (|gesr — gel > 1/2%) then 32, |gisa (2) — gr(x)| < o0, s0 that (ge(2)) is
a Cauchy sequence, and is therefore convergent.

Let f(z) = limgg(z), when this exists, and let f(z) = 0 otherwise.
Then (gx) converges to f almost everywhere, and locally in measure. Since
(Ifn — fl > €) € (|fa — gx] > €/2) U (lgr — f| > €/2), it follows easily that
fn — f locally in measure. O
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In fact, there is a complete metric on M under which the Cauchy sequences
are the sequences which are locally Cauchy in measure, and the convergent
sequences are the sequences which are locally convergent in measure. This
completeness result is at the heart of very many completeness results for
spaces of functions.

If A is a measurable set, its indicator function I, defined by setting
Ip(z) = 1if 2z € A and Ia(x) = 0 otherwise, is measurable. A simple
function is a measurable function which takes only finitely many values,
and which vanishes outside a set of finite measure: it can be written as
Z?ZI a;l4,, where Ay, ..., A, are measurable sets of finite measure (which
we may suppose to be disjoint).

Proposition 1.2.3 A non-negative measurable function f is the pointwise
limit of an increasing sequence of simple functions.

Proof Let Aj, = (f > j/2"), and let f, = 2%2;{”:1[‘4]‘"06‘". Then
(fn) is an increasing sequence of simple functions, which converges point-
wise to f. O

This result is extremely important; we shall frequently establish inequal-
ities for simple functions, using arguments that only involve finite sums,
and then extend them to a larger class of functions by a suitable limit-
ing argument. This is the case when we consider integration, to which we
now turn.

1.3 Integration
Suppose first that f = Y | @;14, is a non-negative simple function. It is
then natural to define the integral as " | a;uu(A;). It is easy but tedious
to check that this is independent of the representation of f. Next suppose
that f is a non-negative measurable function. We then define

/fduzsup{/gdu: g simple, 0 < g < f}.
Q

A word about notation: we write [, fdu or [ fdu for brevity, and
Jo f(x) du(x) if we want to bring attention to the variable (for example, when
f is a function of more than one variable). When integrating with respect to
Borel measure on R?, we shall frequently write fRd f(z) dz, and use familiar

conventions such as fab f(z)dx. When P is a probability measure, we write
E(f) for [ fdP, and call E(f) the expectation of f.



