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Preface

Computational fluid dynamics, usually abbreviated as CFD, is a
branch of fluid mechanics that uses numerical methods and algorithms
to solve and analyse problems that involve fluid flows. Computers are
used to perform the calculations required to simulate the interaction
of liquids and gases with surfaces defined by boundary conditions.
With high-speed supercomputers, better solutions can be achieved.
Ongoing research yields software that improves the accuracy and
speed of complex simulation scenarios such as transonic or turbulent
flows. Initial experimental validation of such software is performed
using a wind tunnel with the final validation coming in full-scale testing,
e.g. flight tests. The fundamental basis of almost all CFD problems are
the Navier—Stokes equations, which define any single-phase (gas or
liquid, but not both) fluid flow. These equations can be simplified by
removing terms describing viscous actions to yield the Euler equations.
Further simplification, by removing terms describing vorticity yields
the full potential equations. Finally, for small perturbations in subsonic
and supersonic flows (not transonic orhypersonic) these equations can
be linearized to yield the linearized potential equations. Historically,
methods were first developed to solve the Linearized potential
equations. Two-dimensional (2D) methods, using conformal
transformationsof the flow about a cylinder to the flow about
an airfoil were developed in the 1930s. The computer power available
paced development of three-dimensional methods. The first work using
computers to model fluid flow, as governed by the Navier-Stokes
equations, was performed at Los Alamos National Labs, in the T3
group. This group was led by Francis H. Harlow, who is widely
considered as one of the pioneers of CFD. From 1957 to late 1960s,
this group developed a variety of numerical methods to simulate
transient two-dimensional fluid flows, such as Particle-in-cell method,
Fluid-in-cell method, Vorticity stream function method, and Marker-
and-cell method. Fromm’s vorticity-stream-function method for 2D,
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transient, incompressible flow was the first treatment of strongly
contorting incompressible flows in the world.

The first paper with three-dimensional model was published by
John Hess and A.M.O. Smith of Douglas Aircraft in 1967. This method
discretized the surface of the geometry with panels, giving rise to this
class of programs being called Panel Methods. Their method itself was
simplified, in that it did not include lifting flows and hence was mainly
applied to ship hulls and aircraft fuselages. The first lifting Panel
Code (A230) was described in a paper written by Paul Rubbert and
Gary Saaris of Boeing Aircraft in 1968. In time, more advanced three-
dimensional Panel Codes were developed at Boeing(PANAIR, A502),
Lockheed (Quadpan), Douglas (HESS), McDonnell Aircraft
(MACAERO), NASA (PMARC) and Analytical Methods (WBAERO,
USAEROand VSAERO- Some (PANAIR, HESS and MACAERO) were
higher order codes, using higher order distributions of surface
singularities, while others (Quadpan, PMARC, USAERO and VSAERO)
used single singularities on each surface panel. The advantage of the
lower order codes was that they ran much faster on the computers
of the time. Today, VSAERO has grown to be a multi-order code and
is the most widely used program of this class. It has been used in the
development of many submarines, surface ships, automobiles,
helicopters, aircraft, and more recently wind turbines. Its sister code,
USAERO is an unsteady panel method that has also been used for
modelling such things as high speed trains and racing yachts. The
NASA PMARC code from an early version of VSAERO and a derivative
of PMARC, named CMARC, is also commercially available.

This book aims at bridging the gap between the two streams
above by providing the reader with the theoretical background of basic
CFD methods without going into deep detail of the mathematics or
numerical algorithms. This book provides the basics of Computational
Fluid Dynamics appropriate to modern day undergraduate study. The
aim 1s to bridge the gap between books focusing on detailed theoretical
analysis and commercial software user’s guides which do not contain
significant theory.

—FEditor
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Chapter 1

Infroduction

Fluid Dynamics

In physics, fluid dynamiecs is a subdiscipline of fluid mechanics
that deals with fluid flow—the natural science of fluids (liquids and
gases) in motion. It has several subdisciplines itself, including
aerodynamics (the study of air and other gases in motion) and
hydrodynamics (the study of liquids in motion). Fluid dynamics has
a wide range of applications, including calculating forces and moments
on aircraft, determining the mass flow rate of petroleum through
pipelines, predicting weather patterns, understanding nebulae in
interstellar space and reportedly modelling fission weapon detonation.
Some of its principles are even used in traffic engineering, where
traffic is treated as a continuous fluid.

Fluid dynamics offers a systematic structure—which underlies
these practical disciplines—that embraces empirical and semi-empirical
laws derived from flow measurement and used to solve practical
problems. The solution to a fluid dynamics problem typically involves
calculating various properties of the fluid, such as velocity, pressure,
density, and temperature, as functions of space and time.

Before the twentieth century, hydrodynamics was synonymous
with fluid dynamics. This is still reflected in names of some fluid
dynamics topics, like magnetohydrodynamics and hydrodynamic
stability, both of which can also be applied to gases.

Equations of Fluid Dynamics

The foundational axioms of fluid dynamics are the conservation
laws, specifically, conservation of mass, conservation of linear
momentum (also known as Newton’s Second Law of Motion), and
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conservation of energy (also known as First Law of Thermodynamics).
These are based on classical mechanics and are modified in quantum
mechanics and general relativity. They are expressed using the
Reynolds Transport Theorem.

In addition to the above, fluids are assumed to obey the continuum
assumption. Fluids are composed of molecules that collide with one
another and solid objects. However, the continuum assumption
considers fluids to be continuous, rather than discrete. Consequently,
properties such as density, pressure, temperature, and velocity are
taken to be well-defined at infinitesimally small points, and are assumed
to vary continuously from one point to another. The fact that the fluid
is made up of discrete molecules is ignored.

For fluids which are sufficiently dense to be a continuum, do not
contain ionized species, and have velocities small in relation to the
speed of light, the momentum equations for Newtonian fluids are the
Navier-Stokes equations, which is a non-linear set of differential
equations that describes the flow of a fluid whose stress depends
linearly on velocity gradients and pressure. The unsimplified equations
do not have a general closed-form solution, so they are primarily of
use in Computational Fluid Dynamics. The equations can be simplified
in a number of ways, all of which make them easier to solve. Some
of them allow appropriate fluid dynamics problems to be solved in
closed form.

In addition to the mass, momentum, and energy conservation
equations, a thermodynamical equation of state giving the pressure
as a function of other thermodynamic variables for the fluid is required
to completely specify the problem. An example of this would be the
perfect gas equation of state:

B pR,T
M

where p is pressure, p is density, R isthe gas constant, M is the molar
mass and 7' is temperature.

Conservation Laws

Three conservation laws are used to solve fluid dynamics problems,
and may be written in integral or differential form. Mathematical
formulations of these conservation laws may be interpreted by
considering the concept of a control volume. A control volume is a
specified volume in space through which air can flow in and out.
Integral formulations of the conservation laws consider the change
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in mass, momentum, or energy within the control volume. Differential
formulations of the conservation laws apply Stokes’ theorem to yield
an expression which may be interpreted as the integral form of the
law applied to an infinitesimal volume at a point within the flow.

+ Mass continuity (conservation of mass): The rate of change of
fluid mass inside a control volume must be equal to the net
rate of fluid flow into the volume. Physically, this statement
requires that mass is neither created nor destroyed in the
control volume, and can be translated into the integral form
of the continuity equation:

0
aqﬂ VpdV= - C.‘E.fspu»ats

Above, p is the fluid density, u is a velocity vector, and £ is time.
The left-hand side of the above expression contains a triple integral
over the control volume, whereas the right-hand side contains a
double integral over the surface of the control volume. The differential
form of the continuity equation is:

op
—+Vi{(pu)=0
= (pu)

* Conservation of Momentum: This equation applies Newton’s
second law of motion to the control volume, requiring that any
change in momentum of the air within a control volume be due
to the net flow of air into the volume and the action of external
forces on the air within the volume. In the integral formulation
of this equation, body forces here are represented by f,, a0 the
body force per unit mass. Surface forces, such as viscous forces,

are represented by F,,,, the net force due to stresses on the
control volume surface.

1)
a@ VpudV= _ﬁS(pudS)u-— @Spds+ ﬁ fobodydv"'Fsurf

The differential form of the momentum conservation equation is
as follows. Here, both surface and body forces are accounted for in
one total force, F. For example, F'may be expanded into an expression
for the frictional and gravitational forces acting on an internal flow.

Du_p_Y¥p

Dt p

In aerodynamics, air is assumed to be a Newtonian fluid, which
posits a linear relationship between the shear stress (due to internal
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friction forces) and the rate of strain of the fluid. The equation above
is a vector equation: in a three dimensional flow, it can be expressed
as three scalar equations. The conservation of momentum equations
for the compressible, viscous flow case are called the Navier-Stokes
equations.

* Conservation of Energy: Although energy can be converted
from one form to another, the total energy in a given closed
system remains constant.

p%=&)~+V'(kVT)+(D
Dt Dt

Above, h is enthalpy, k is the thermal conductivity of the fluid,
T is temperature, and @ is the viscous dissipation function. The
viscous dissipation function governs the rate at which mechanical
energy of the flow is converted to heat. The second law of
thermodynamics requires that the dissipation term is always positive:
viscosity cannot create energy within the control volume. The
expression on the left side is a material derivative.

Compressible vs Incompressible Flow

All fluids are compressible to some extent, that is, changes in
pressure or temperature will result in changes in density. However,
in many situations the changes in pressure and temperature are
sufficiently small that the changes in density are negligible. In this
case the flow can be modelled as an incompressible flow. Otherwise
the more general compressible flow equations must be used.

Mathematically, incompressibility is expressed by saying that the
density p of a fluid parcel does not change as it moves in the flow field,
le.,

Dp _
Dt
where D/Dt is the substantial derivative, which is the sum of local
and convective derivatives. This additional constraint simplifies the

governing equations, especially in the case when the fluid has a
uniform density.

b

For flow of gases, to determine whether to use compressible or
incompressible fluid dynamics, the Mach number of the flow is to be
evaluated. As a rough guide, compressible effects can be ignored at
Mach numbers below approximately 0.3. For liquids, whether the
incompressible assumption is valid depends on the fluid properties
(specifically the critical pressure and temperature of the fluid) and
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the flow conditions (how close to the critical pressure the actual flow
pressure becomes). Acoustic problems always require allowing
compressibility, since sound waves are compression waves involving
changes in pressure and density of the medium through which they
propagate.

Viscous vs Inviscid Flow

Viscous problems are those in which fluid friction has significant
effects on the fluid motion.

The Reynolds number, which is a ratio between inertial and
viscous forces, can be used to evaluate whether viscous or inviscid
equations are appropriate to the problem.

Stokes flow is flow at very low Reynolds numbers, Re<<1, such
that inertial forces can be neglected compared to viscous forces.

On the contrary, high Reynolds numbers indicate that the inertial
forces are more significant than the viscous (friction) forces. Therefore,
we may assume the flow to be an inviscid flow, an approximation in
which we neglect viscosity completely, compared to inertial terms.

This idea can work fairly well when the Reynolds number is high.
However, certain problems such as those involving solid boundaries,
may require that the viscosity be included. Viscosity often cannot be
neglected near solid boundaries because the no-slip condition can
generate a thin region of large strain rate (known as Boundary layer)
which enhances the effect of even a small amount of viscosity, and
thus generating vorticity. Therefore, to calculate net forces on bodies
(such as wings) we should use viscous flow equations. As illustrated
by d’Alembert’s paradox, a body in an inviscid fluid will experience
no drag force. The standard equations of inviscid flow are the Euler
equations. Another often used model, especially in computational
fluid dynamics, is to use the Euler equations away from the body and
the boundary layer equations, which incorporates viscosity, in a region
close to the body.

The Euler equations can be integrated along a streamline to get
Bernoulli’s equation. When the flow is everywhere irrotational and
inviscid, Bernoulli’s equation can be used throughout the flow field.
Such flows are called potential flows.

Steady vs Unsfteady Flow

When all the time derivatives of a flow field vanish, the flow is
considered to be a steady flow. Steady-state flow refers to the condition
where the fluid properties at a point in the system do not change over
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time. Otherwise, flow is called unsteady (also called transient). Whether
a particular flow is steady or unsteady, can depend on the chosen
frame of reference. For instance, laminar flow over a sphere is steady
in the frame of reference that is stationary with respect to the sphere.
In a frame of reference that is stationary with respect to a background
flow, the flow is unsteady.

04 04 04 04

05-—————— 05 05 [ ] S —
0 0.1 02 0 01 02 0 01 02 0 01 02

x x x x

Figure: Hydrodynamics simulation of the Rayleigh—Taylor instability

Turbulent flows are unsteady by definition. A turbulent flow can,
however, be statistically stationary. According to Pope:

The random field U(x,t) is statistically stationary if all statistics
are invariant under a shift in time.

This roughly means that all statistical properties are constant in
time. Often, the mean field 1s the object of interest, and this is
constant too in a statistically stationary flow.

Steady flows are often more tractable than otherwise similar
unsteady flows. The governing equations of a steady problem have one
dimension fewer (time) than the governing equations of the same
problem without taking advantage of the steadiness of the flow field.

Laminar vs Turbulent Flow

Turbulence is flow characterized by recirculation, eddies, and
apparent randomness. Flow in which turbulence is not exhibited is
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called laminar. It should be noted, however, that the presence of
eddies or recirculation alone does not necessarily indicate turbulent
flow—these phenomena may be present in laminar flow as well.
Mathematically, turbulent flow is often represented via a Reynolds
decomposition, in which the flow is broken down into the sum of an
average component and a perturbation component.

It is believed that turbulent flows can be described well through
the use of the Navier—Stokes equations. Direct numerical simulation
(DNS), based on the Navier—Stokes equations, makes it possible to
simulate turbulent flows at moderate Reynolds numbers. Restrictions
depend on the power of the computer used and the efficiency of the
solution algorithm. The results of DNS have been found to agree well
with experimental data for some flows.

Most flows of interest have Reynolds numbers much too high for
DNS to be a viable option, given the state of computational power for
the next few decades. Any flight vehicle large enough to carry a
human (L > 3 m), moving faster than 72 km/h (20 m/s) is well beyond
the limit of DNS simulation (Re = 4 million). Transport aircraft wings
(such as on an Airbus A300 or Boeing 747) have Reynolds numbers
of 40 million (based on the wing chord). In order to solve these real-
life flow problems, turbulence models will be a necessity for the
foreseeable future.

Reynolds-averaged Navier—Stokes equations (RANS) combined
with turbulence modelling provides a model of the effects of the
turbulent flow. Such a modelling mainly provides the additional
momentum transfer by the Reynolds stresses, although the turbulence
also enhances the heat and mass transfer. Another promising
methodology is large eddy simulation (LES), especially in the guise
of detached eddy simulation (DES)—which is a combination of RANS
turbulence modelling and large eddy simulation.

Newtonian vs Non-Newfonian Fluids

Sir Isaac Newton showed how stress and the rate of strain are
very close to linearly related for many familiar fluids, such as water
and air. These Newtonian fluids are modelled by a coefficient called
viscosity, which depends on the specific fluid.

However, some of the other materials, such as emulsions and
slurries and some visco-elastic materials (e.g. blood, some polymers),
have more complicated non-Newtonian stress-strain behaviours. These
materials include sticky liquids such as latex, honey, and lubricants
which are studied in the sub-discipline of rheology.
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Subsonic vs Transonic, Supersonic and Hypersonic Flows

While many terrestrial flows (e.g. flow of water through a pipe)
occur at low mach numbers, many flows of practical interest (e.g. in
aerodynamics) occur at high fractions of the Mach Number M=1 or
in excess of it (supersonic flows). New phenomena occur at these Mach
number regimes (e.g. shock waves for supersonic flow, transonic
instability in a regime of flows with M nearly equal to 1, non-equilibrium
chemical behaviour due to ionization in hypersonic flows) and it 1s
necessary to treat each of these flow regimes separately.

Magnetohydrodynamics

Magnetohydrodynamics is the multi-disciplinary study of the flow
of electrically conducting fluids in electromagnetic fields. Examples
of such fluids include plasmas, liquid metals, and salt water. The fluid
flow equations are solved simultaneously with Maxwell’'s equations
of electromagnetism.

Other Approximations

There are a large number of other possible approximations to
fluid dynamic problems. Some of the more commonly used are listed
below.

* The Boussinesq approximation neglects variations in density
except to calculate buoyancy forces. It is often used in free
convection problems where density changes are small.

* Lubrication theory and Hele-Shaw flow exploits the large aspect
ratio of the domain to show that certain terms in the equations
are small and so can be neglected.

» Slender-body theory is a methodology used in Stokes flow
problems to estimate the force on, or flow field around, a long
slender object in a viscous fluid.

* The shallow-water equations can be used to describe a layer
of relatively inviscid fluid with a free surface, in which surface
gradients are small.

+ The Boussinesq equations are applicable to surface waves on
thicker layers of fluid and with steeper surface slopes.

+ Darcy’s law is used for flow in porous media, and works with
variables averaged over several pore-widths.

* In rotating systems, the quasi-geostrophic approximation
assumes an almost perfect balance between pressure gradients



