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Preface

In the past decade there has been a significant change in the freshman/
sophomore mathematics curriculum as taught at many, if not most, of our
colleges. This has been brought about by the introduction of linear algebra
into the curriculum at the sophomore level. The advantages of using linear
algebra both in the teaching of differential equations and in the teaching
of multivariate calculus are by now widely recognized. Several textbooks
adopting this point of view are now available and have been widely adopted.
Students completing the sophomore year now have a fair preliminary under-
standing of spaces of many dimensions.

It should be apparent that courses on the junior level should draw upon
and reinforce the concepts and skills learned during the previous year.
Unfortunately, in differential geometry at least, this is usually not the case.
Textbooks directed to students at this level generally restrict attention to
2-dimensional surfaces in 3-space rather than to surfaces of arbitrary
dimension. Although most of the recent books do use linear algebra, it is
only the algebra of R*. The student’s preliminary understanding of higher
dimensions is not cultivated.

This book develops the geometry of n-dimensional surfaces in (n + 1)-
space. It is designed for a 1-semester differential geometry course at the
junior-senior level. It draws significantly on the contemporary student’s
knowledge of linear algebra, multivariate calculus, and differential equations,
thereby solidifying the student’s understanding of these subjects. Indeed,
one of the reasons that a course in differential geometry is so valuable at
this level is that it does turn out students with a thorough understanding
of several variable calculus.

Another reason that differential geometry regularly attracts students is
that it contains ideas which are not only beautiful in themselves but are

Vil



viil Preface

basic for both advanced mathematics and theoretical physics. It has been
the author’s experience that students taking his course have been more or
less evenly divided between mathematics and physics majors. The approach
adopted in this book, describing surfaces as solution sets of equations,
seems to be especially attractive to physicists.

The book considers from the outset the geometry of orientable hyper-
surfaces in R"*', exhibited as inverse images of regular values of smooth
functions. By considering only such hypersurfaces for the first half of the
book, it is possible to move rapidly into interesting global geometry without
getting hung up on the development of sophisticated machinery. Thus, for
example, charts (coordinate patches) are not introduced until after the
initial discussions of geodesics, parallelism, curvature, and convexity. When
charts are introduced, it is as a tool for computation. However, they then
lead the development naturally into the study of focal points and surfaces
of arbitrary codimension.

One of the advantages of treating the geometry of n-dimensions from the
outset is that one can then illustrate each concept simultaneously in each
of the low dimensions. Thus, for example, the student’s understanding of
the Gauss map and its (spherical) image is aided by the possibility of
studying 1-dimensional examples, where the spherical image is a subset of
the unit circle.

The main tool used in developing the theory is that of the calculus of
vector fields. This seems to be the most natural tool for studying differential
geometry as well as the one most familiar to undergraduate students of
mathematics and physics. Differential forms are not introduced until fairly
late in the book, and then only as needed for use in integration.

Students who have completed a good 2-year calculus sequence including
linear algebra and differential equations should be adequately prepared to
study this book. There are occasional places (e.g., in Chapter 13 on convexity)
where some exposure to the ideas of mathematical analysis would be helpful,
but not essential.

There is probably more material here than can be covered comfortably
in one semester except by students with unusually strong backgrounds.
Chapters 1-12, 14, 15, 22, and 23 contain the core of basic material which
should be covered in every course. Most instructors will probably also want
to cover at least parts of Chapters 17, 19, and 24.
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The interdependence of the chapters is as follows:

A few concepts in the early part of Chapter 13 are used in later chapters
but these may be studied, by those skipping Chapter 13, as needed.

Like the author of any textbook, I owe a considerable debt to researchers
and textbook writers who have preceded me and to teachers, colleagues,
and students who have influenced me. While I cannot explicitly acknowledge
all these, I must at least credit M. do Carmo and E. Lima whose paper,
Isometric immersions with semi-definite second quadratic forms, Arch. Math.
20 (1969) 173-175, inspired the treatment of convex surfaces in Chapter 13,
and S. S. Chern whose paper, A simple intrinsic proof of the Gauss-Bonnet
formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944)
747-752, inspired the treatment of the Gauss-Bonnet theorem in Chapter 21.
In addition, special thanks are due to Wolfgang Meyer whose comments on
the manuscript have been extremely helpful.

Stony Brook, New York JOHN A. THORPE
November, 1978
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