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Preface

The subjects of this book are the mathematical foundations of non-relativistic quan-
tum mechanics and the mathematical theory they require. In its mathematical part,
this book aims at expounding in a complete and self-contained way the mathemati-
cal basis for “mathematical” quantum mechanics, namely the branch of mathemat-
ical physics that was constructed by David Hilbert, John von Neumann and other
mathematicians, notably George Mackey, in order to systematize quantum mechan-
ics, and which was presented in book form for the first time by von Neumann in
1932 (Neumann, 1932). In von Neumann’s approach, the language of quantum
mechanics is the theory of linear operators in Hilbert space.

Von Neumann’s book was the result of work which had been done previously over
several years. Hilbert, who had been consulted on numerous aspects of quantum
mechanics since its inception, began in 1926 a systematic study of its mathemat-
ical foundations. Hilbert taught the course “Mathematical Methods of Quantum
Theory” in the academic year 1926-27, and a summary of Hilbert’s lessons was pub-
lished in the spring of 1927 by Hilbert himself and his assistants Lothar Nordheim
and von Neumann (Hilbert et al., 1927). In their view, the mathematical framework
suitable for quantum mechanics was the mathematical structure that was defined
in an abstract way and called a Hilbert space by von Neumann in 1927. Further-
more, between 1926 and 1932, von Neumann proved a number of theorems about
operators in Hilbert space which bore upon quantum mechanics (among them, the
spectral theorem for unbounded self-adjoint operators), and so did the mathemati-
cians Marshall Stone and Hermann Weyl, who had a keen interest in quantum
mechanics. Thus, the theory of linear operators in Hilbert space was actually born
as the mathematical basis for quantum mechanics.

Quantum mechanics and the theory of Hilbert space operators constitute one
of those rare examples in which there is complete correspondence between physical
and mathematical concepts (another example is Euclidean geometry). Actually, it is
one of the most stunning examples of “the unreasonable effectiveness of mathemat-
ics in the natural sciences” (E.P. Wigner). Unfortunately, this aspect of quantum
mechanics is almost completely overlooked in most quantum mechanics textbooks,
where too many subtle points are dealt with by means of mathematical shortcuts
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viii Hilbert Space and Quantum Mechanics

which not only can hardly convince a mathematically aware reader but also blot out
physical subtleties. The main reason for this is that, in the community of physicists,
Dirac’s quantum mechanics (Dirac, 1958, 1947, 1935, 1930) is by far more popu-
lar than von Neumann’s quantum mechanics, perhaps exactly because the former
requires almost no mathematics. For instance, the idea that self-adjoint operators
have a critical domain is almost completely missing in standard quantum mechanics
textbooks; however, the domain of an unbounded self-adjoint operator represents
exactly the pure states in which the fundamental statistical quantities (expected
result and uncertainty) are defined for the observable represented by that opera-
tor. This point gets hopelessly blurred in most quantum mechanics books, which
treat unbounded observables — like energy, position, momentum, orbital angular
momentum — as if they were represented by self-adjoint operators defined on the
entire space, while this is impossible on account of the Hellinger—Toeplitz theorem.
Another example is the relation existing between the physical idea of compatibility
of two observables and the mathematical idea of commutativity of the operators
that represent them; for self-adjoint operators, the right notion of commutativity
is subtler than the one usually found in quantum mechanics books and depends
on the representations of the operators as projection valued measures; however it is
exactly through this subtler notion that the physical essence of compatibility can be
really grasped. More than anything else, the real way to understand why quantum
observables are represented by self-adjoint operators is through the spectral theo-
rem, since quantum observables arise most naturally as projection valued measures,
but this is usually outside the scope of standard quantum mechanics books.

One last word about the mathematical framework for quantum mechanics pre-
sented in this book. It is undoubtedly very interesting and useful to treat quantum
mechanics in the framework of mathematical structures more general than Hilbert
space theory, especially in order to study quantum mechanics of systems with an in-
finite number of degrees of freedom. However, quantum mechanics in Hilbert space
is an enthralling subject in its own right, mainly because it is here that one can see
most clearly how the mathematical structure is linked to the physical theory in an
almost necessary way.

Most books about fundamental quantum mechanics use results in the theory
of Hilbert space operators without proving them, while most books about Hilbert
space operators do not treat quantum mechanics; moreover, they often use fairly
advanced results from other branches of mathematics assuming the reader to be
already familiar with them, but this is seldom true. The aim of this book is not
to be a complete treatise about Hilbert space operators, but to give a really self-
contained treatment of all the elements of this subject that are necessary for a
sound and mathematically accurate exposition of the principles of quantum me-
chanics; this exposition is the object of the final chapters of the book. The main
characteristic of the book is that the mathematical theory is developed only assum-
ing familiarity with elementary analysis. Moreover, all the proofs in the book are
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carried out in a very detailed way. These features make the book easily accessible to
readers with only the mathematical experience offered by undergraduate education
in mathematics or in physics, and also ideal for individual study. The principles
of quantum mechanics are discussed with complete mathematical accuracy and an
effort is always made to trace them back to the experimental reality that lies at
their root. The treatment of quantum mechanics is axiomatic, with definitions fol-
lowed by propositions proved in a mathematical fashion. No previous knowledge
of quantum mechanics is required. The level of this book is intermediate between
advanced undergraduate and graduate. It is a purely theoretical book, in which no
exercises are provided.

After the first chapter, whose function is mainly to fix notation and terminology,
the first part of the book (Chapters 2-9) is devoted to an exposition of the elements
of real and abstract analysis that are needed later in the study of operators in
Hilbert space. The reason for this is to make it really self-contained and avoid
proving theorems by means of other fairly advanced theorems outside this book. In
particular, the chapter devoted to metric spaces (Chapter 2) contains results which
are not completely elementary but are necessary in order to prove (in Chapter 6) the
theorem about Borel functions that plays an essential role in proving the spectral
theorems (in Chapter 15). The chapters about measure and integration (Chapters
5-9) contain results about extensions of measures which are not to be found in first
level books on measure theory but which are essential in order to study commuting
self-adjoint operators, and also the Riesz—Markov theorem about positive linear
functionals which plays an essential role in proving the spectral theorems. Actually,
Chapters 1-2 and 5-9 could by themselves be a short book about measure and
integration. Chapters 3 and 4 deal with that part of the theory of linear operators in
normed spaces that is used later in the study of Hilbert space operators. Moreover,
the Stone—Weierstrass approximation theorem is proved in Chapter 4; this theorem
plays an essential role in proving the spectral theorems.

The second part of this book (Chapters 10-18) is its core, and contains a treat-
ment of the theory of linear operators in Hilbert space which is particularly well
suited for the discussion of the mathematical foundations of quantum mechanics
presented later in the book. It contains the spectral theorems for unitary and for
self-adjoint operators, one-parameter unitary groups and Stone’s theorem, theo-
rems about commuting operators and invariant subspaces, trace class operators,
and also Wigner’s theorem and the real line special case of Bargmann’s theorem
about automorphisms of projective Hilbert spaces.

The theory of Hilbert space operators is the backbone of the third and final
part of the book, which consists of two chapters (19 and 20). The first of these is
by far the longest chapter in the book and endeavours to present the principles of
non-relativistic quantum mechanics in a mathematically accurate way, with also an
unstinting effort to present some possible physical reasoning behind the constructs
that are considered. Since the predictions provided by quantum mechanics are in
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general statistical ones, in the first part of this chapter general statistical ideas are
introduced and it is examined how these ideas are implemented in classical theories;
later in the chapter, the statistical aspects of quantum mechanics are compared and
contrasted with the same aspects of classical theories. The final chapter deals with
an important example of how quantum observables can arise in connection with
symmetry principles; moreover, it presents the Stone-von Neumann uniqueness
theorem about canonical commutation relations.

Although the book’s length might make it difficult to use it as a textbook for a
single course, parts of it can easily be used in that way for various courses. Here
are some concrete suggestions:

e Chapters 1, 2, 5, 6, 7, 8, 9 for a one-semester course in Real Analysis or in Measure
Theory (intermediate, could be either undergraduate or graduate, mathematics);

e Chapters 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18 for a two-semester course in
Operators in Hilbert Space (graduate, mathematics and physics);

e Chapters 19, 20 (using without proof a large number of results from the previous
chapters) for a one-semester course in Mathematical Foundations of Quantum
Mechanics (graduate, mathematics and physics).

To make cross-reference as easy as possible, almost every bit of this book is
marked with three numbers, the first for the chapter, the second for the section,
and the third for the position within the section. Comments also are marked in
this way, and they are called “remarks”. As already mentioned, all the proofs in
this book are written in minute detail; in them, however, previous results are always
quoted simply by means of the three numbers code, without spelling them out. This
should enable experts to pursue the logic of a proof without too many diversions,
and beginners to receive all the support they might need.

I wish to thank Roberto Palazzi for the great job he did of preparing the KXTEX
files for the book, and also for useful mathematical comments.

Franco Gallone
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Chapter 1

Sets, Mappings, Groups

Most readers are likely to have a working familiarity with most of the subjects of
this introductory chapter. For them, the main function of this chapter is to fix the
notation and the terminology that will be used throughout this book and provide
ready reference inside the book.

1.1 Symbols, sets, relations

The reader is assumed to be already familiar with the topics of this section, which
is only intended for future reference.

1.1.1 Sets of numbers

Symbol Meaning

N the set of all positive integers, i.e. {1,2,3,...}

Z the set of all integers, i.e. {0,+1,+2,...}

Q the set of all rational numbers, i.e. {m/n:m,n € Z and n # 0}

R the set of all real numbers

[0, 00 the set of all non-negative real numbers

(0, ) the set of all positive real numbers

C the set of all complex numbers

The complex field is always meant to be R? endowed with the two operations:

7

(a1,a2) =+ (bl,bQ) - (al + b17a2 + b2)7
(a1,a2)(b1,b2) = (a1br — azbz, a1bs + azby),

and C denotes the set R? when R? is endowed in this way.
For a complex number z := (a1, a2), we define:

Rez:=a1,Imz = ag,Z := (a1, —a2),|z| := y/a? + a3.

The subset {(a,0) : a € R} of C is identified with R, identifying (a,0) with a.
With this identification, for a complex number z we have Zz = 2Z = [z|?, and the
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absolute value of a real number a coincides with |a|. Identifying a € R with (a,0)
and defining i := (0,1), we also have (a;,a2) = a1 + iaz. When for a complex
number z we write 0 < z (or 0 < z, 2 <0, 2 < 0), we mean Imz =0 and 0 < Rez
(or 0 < Rez, Rez <0, Rez < 0). More generally, outside the chapters devoted to
measure and integration, when for a symbol z we write 0 < z or x > 0 we mean
z € [0,00); similarly, by 0 < z or z > 0 we mean z € (0,00). However, in chapters
from 5 to 9 by 0 < z or z > 0 we mean z € [0,00] and by 0 < z or z > 0 we mean
z € (0,00] (i.e. we allow the case z = oo; cf. 5.1.1).

It is always understood that the square root of a positive real number is taken
to be positive.

1.1.2 Proofs

A proposition is a statement that is either true or false (but not both). By means of
logical connectives and brackets, a new proposition can be defined starting from one
or more given propositions. We assume known to the reader the logical connectives:
“not”, “and”, “or” (“A or B” means “A or B or both”), “=" (if, then), “&" (if
and only if).

Given two propositions P, @, the proposition P = @ is logically equivalent to the
proposition (notQ)) = (notP), which is called the contrapositive form of P = Q. A
proof that (notQ) = (notP) is true, is called proof by contraposition of P = Q. The
proposition P = @ is also logically equivalent to the proposition [P and (notQ)] =
[R and (notR)], for any proposition R. A proof that there is a proposition R such
that [P and (notQ@)] = [R and (notR)] is true, is called proof by contradiction of
P=Q.

Suppose that, for each positive integer n, we are given a proposition P,. From
the principle of induction it follows that, if the propositions

(a) P17
(b) P, = P,y is true for each positive integer n

are true, then the proposition
(¢) P is true for each positive integer n

is true. A proof that propositions a and b are true is called proof by induction of
proposition c. ‘

Often, for a proposition P, we will write “P” instead of “P is true” or “P holds”.
Propositions will be written in a rather informal style, mixing logical symbols and
ordinary language.



