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Preface

In 1940, Alfred Tarski, the noted logician, asked three major questions about the ele-
mentary or first-order theory of the class of non-Abelian free groups. These were sub-
sequently formalized into conjectures. The first of these Tarski conjectures about non
Abelian free groups is that all non-Abelian free groups have exactly the same first-
order theory. The second is that the natural embedding of one free group into another
is an elementary embedding. This second conjecture implies the first. Finally Tarski
asked if the elementary theory of the non-Abelian free groups is decidable, that is does
there exist an algorithm to determine if a first order sentence is true or not within the
class of non-Abelian free groups. The conjectures remained open for over fifty years.

In a series of papers from 1998-2006 the first two Tarski conjectures were an-
swered in the affirmative by Olga Kharlampovich and Alexei Myasnikov [152, 153, 154,
155, 156] and independently by Zil Sela [233, 234, 235, 236, 237]. Kharlampovich and
Myasnikov also proved Tarski conjecture 3. The proofs of both Kharlampovich and
Myasnikov and of Sela involve long and complicated applications of algebraic geom-
etry over free groups (Sela calls this Diophantine geometry) as well as an extension
of methods to solve equations over free groups originally developed by Makanin and
Razborov. The material necessary to understand these proofs is quite daunting even
for accomplished group theorists and logicians. This book is an examination of the
material on group theory and logic and on the general elementary theory of groups
that is necessary to begin to understand the proofs. This material includes a complete
exposition of the theory of fully residually free groups or limit groups as well a com-
plete description of the algebraic geometry of free groups. Also included are intro-
ductory material on combinatorial and geometric group theory and first-order logic.
There is then a short outline of the proof of the Tarski conjectures. We found that in
many cases, group theorists don’t know enough logic to understand the proof while
the same is true for logicians, that is the logicians for the most part don’t understand
enough of the group theory. Part of our goal in this book is to correct this.

We first introduce some basic ideas and give some history.

The elementary theory of groups is tied to first-order logic and to model theory.
We will look at elementary logic and model theory in more detail in Chapter 4. We
start with a first-order language appropriate for group theory. This language, which
we denote L, is the first-order language with equality containing a binary operation
symbol - a unary operation symbol ~! and a constant symbol 1. A sentence in L is
a logical expression using variables, the operational symbols above, equality, logical
connectives and quantifiers. A universal sentence of L is one of the form Vx{¢(x)}
where X is a tuple of distinct variables, ¢(x) is a formula of L, containing no quanti-
fiers and containing at most the variables of X. For example

Y(x, y){xy = yx}
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is a universal sentence describing an Abelian group. Similarly an existential sentence
is one of the form 3x{¢(X)} where X and ¢(x) are as above. For example

3(x, Y){xy # yx}

is an existential sentence describing a non-Abelian group. A universal-existential sen-
tence is one of the form Yx3y{¢(x, ¥)}. Similarly defined is an existential-universal
sentence. It is known that every sentence of L, is logically equivalent to one of the
form Q, x,...Q,x,¢(x) where X = (x,,..., x,) is a tuple of distinct variables, each Q,
fori = 1,...,nis a quantifier, either V or 3, and ¢(x) is a formula of L, containing
no quantifiers and containing freely at most the variables x, . . ., x,,. Further vacuous
quantifications are permitted. Finally a positive sentence is one logically equivalent to
a sentence constructed using (at most) the connectives Vv, A, V, 3.

If G is a group then the universal theory of G consists of the set of all universal
sentences of L, true in G. Since any universal sentence is equivalent to the negation
of an existential sentence it follows that two groups have the same universal theory if
and only if they have the same existential theory. The set of all sentences of L , truein G
is called the first-order theory or the elementary theory of G. We denote this by Th(G).
We note that being first-order or elementary means that in the intended interpretation
of any formula or sentence all of the variables (free or bound) are assumed to take on as
values only individual group elements — never, for example, subsets of, nor functions
on, the group in which they are interpreted.

We say that two groups G and H are elementarily equivalent (symbolically G = H)
if they have the same first-order theory, that is Th(G) = Th(H).

Group monomorphisms which preserve first-order formulas are called elementary
embeddings. Specifically, if H and G are groups and

f:H—-G

is a monomorphism then f is an elementary embedding provided whenever ¢(x,,
... Xx,) is a formula of L, containing free at most the distinct variables x,, .. ., x,, and
(hgs .. - h,) € H™ then ¢(hy, ..., h,) is true in H if and only if ¢( f (), - . ., f(h,)) is
true in G. If H is a subgroup of G and the inclusion mapi: H — G is an elementary
embedding then we say that G is an elementary extension of H.

The genesis of the Tarski problems is the observation that most theorems con-
cerning free groups are independent of the rank of the free group. As an example we
note the Nielsen—Schreier Theorem (see Chapter 2) which says that any subgroup of
a free group is itself a free group (independent of the rank of the overgroup). Another
example is the result that an Abelian subgroup of a free group, again of any rank,
must be cyclic. Proceeding further, suppose that # < 1 are positive integers. From the
Nielsen—Schreier Theorem it is clear that a free group of rank # can be embedded iso-
morphically into a free group of rank m. Hence F, can be embedded into F,,. Further
it can be shown that a free group of any countable rank can be embedded isomorphi-
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cally into a free group of rank 2. It follows that F,, can be embedded into F, . Therefore
F, and F,, must be similar.

There was some initial early success on the Tarski conjectures. Vaught showed
that the Tarski conjectures 1,2 are true if G and H are both free groups of infinite rank.
Combining his result with the elementary chain theorem (see Chapter 4) reduced the
conjectures to free groups of finite rank. He also provided a criterion, now called the
Tarski—Vaught criterion, to determine if an embedding of one group into another is an
elementary embedding.

The next significant progress was due to Merzljakov. The positive theory of a
group G consists of all the positive sentences true in G. Merzljakov [185] showed that
the non-Abelian free groups have the same positive theory. A proof of Merzljakov’s
[185] result can be given involving generalized equations and a quantifier elimination
process. This was a precursor to the methods used in the eventual solution of the
overall Tarski problems.

Work following Merzljakov centered on restricted theories of free groups. Itis fairly
straightforward to show that any two non-Abelian free groups satisfy the same univer-
sal theory. Sacerdote [226] proved that this could be extended to universal-existential
sentences or 1,-sentences (see Chapter 4).

Despite this early sucessful work, the conjectures remained open for over fifty
years after Tarski initially proposed them. In a 1988 paper surveying combinatorial
group theory [175] Roger Lyndon called the Tarski problems, which he described as
folklore, among the outstanding open problems (at that time) in the field. After this
point the pieces in the big puzzle began to placed together. First a result of Gaglione
and Spellman and independently V. Remeslennikov and building on results of Gilbert
Baumslag and Benjamin Baumslag showed that finitely generated groups that share
the same universal theory as the class of non-Abelian free groups are precisely the
class of finitely generated fully residually free groups. This shifted the focus to the
class of finitely generated fully residually free groups in the search for the class of
groups that share the same complete first-order theory as the non-Abelian free groups.
Further from the Tarski-Vaught criterion the concentration was on the solution of
equations in groups.

Dealing with systems of equation over free groups, it was clear from the begin-
ning that to deal with the Tarski’s conjectures a precise description of solution sets of
equations (and inequations) over free groups was needed. Therefore in analogy with
the classical solutions of polynomial equations over fields what was needed was a
translation of classicial algebraic geometry to an algebraic geometry over groups. In
the late 1990s Gilbert Baumslag, Olga Kharlampovich, Alexei Myasnikov, and Vladimir
Remeslennikov developed the basics of algebraic geometry over groups introducing
analogs of the standard algebraic geometric notions such as algebraic sets, the Zariski
topology, Noetherian domains, irreducible varieties, radicals and coordinate groups.

The first general results on equations in groups appeared in the 1960s. Roger Lyn-
don developed several extremely important ideas. He considered completions of a
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given group G by allowing exponents in various rings and then used these comple-
tions to parameterize solutions of equations in G. Along these lines he introduced the
free exponential group F Zlt] with exponents in the integral polynomial ring Z[¢]. Sub-
sequently it was shown that the finitely generated subgroups of this free exponential
group coincides with the class of finitley generated fully residually free groups and
hence with the class of universally free groups.

Another idea originating with Lyndon, in addition to generalizing the ring of ex-
ponents to Z([t], is to consider groups with free length functions with values in some
ordered Abelian group. This allows one to axiomatize the classical Nielsen technique
based on the standard length function in free groups and apply it to “non-standard”
extensions of free groups, for instance, to ultrapowers of free groups. A link with
the Tarski problems comes here by the Keisler—Shelah theorem, that states that two
groups are elementarily equivalent if and only if their ultrapowers (with respect to a
non-principal ultrafilter) are isomorphic.

In the eighties new crucial concepts were introduced. Makanin proved the algo-
rithmic decidability of the Diophantine problem over free groups, and showed that
both, the universal theory and the positive theory of a free group are algorithmically
decidable. He created an extremely powerful technique (the Makanin elimination pro-
cess) to deal with equations over free groups. Shortly afterwards, Razborov then de-
scribed the solution set of an arbitrary system of equations over a free group in terms
of what is known now as Makanin-Razhorov diagrams.

A few years later Edmunds and Commerford and Grigorchuck and Kurchanov de-
scribed solution sets of arbitrary quadratic equations over free groups. These equa-
tions came to group theory from topology and their role in group theory was not ini-
tially clear. However it was subsequently proved, and it became fundamental to the
proof of the Tarski conjectures, that an arbitrary system of equations is equivalent to
a collection of a special type of quadratic systems.

This book is laid out in the following manner. In Chapter 2 we present the neces-
sary material from Combinatorial Group Theory. This will include the material on free
groups and group amalgams.

Over the past twenty years, building on work of Gromov, Rips, Bass and Serre
and others, geometric ideas have gained prominence. This has been given the overall
name Geometric Group Theory and includes hyperbolic group theory and the theory
of groups acting on various types of trees. In Chapter 3 we describe the essential ideas
in Geometric Group Theory,

In Chapter 4 we will formally introduce the ideas from first-order languages and
model theory, most of which are not as well-known to group theorists as they should
be. We will also review the concepts of filters, ultra-filters and ultra-products which
are essential tools in the study of elementary properties.

In Chapter 5 we will give a more formal description of the Tarski problems as well
as a survey of Tarski-like results for other classes of groups.
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In Chapters 6 and 7 we describe the vast body of results on fully residually free
groups. In Chapter 6 we introduce fully residually free groups, and related concepts,
and present the basic properties of such groups including the equivalence with uni-
versally free groups. We also describe the general structure theory of these groups.

In Sela’s approach the class of fully residually free groups arises as the class of
limiting groups from homomorphisms into free groups. Sela terms these limit groups.
In Chapter 7 we describe the equivalences for various interpretations of the class of
limit groups including some topological interpretations.

In Chapter 8 we present the basic framework of algebraic geometry over groups.
This includes algebraic sets, the Zariski topology, Noetherian domains, irreducible va-
rieties, radicals and coordinate groups. We also prove that the coordinate groups of
irreducible algebraic varieties over free groups are the limit groups.

In Chapter 9 we outline the Kharlampovich—-Myasnikov proof of the Tarski prob-
lems. This involves an induction on the number of quantifiers in a logical sentence
and a quantifier elimination process that they call the elimination process.

As part of the solution of the Tarski conjectures both Kharlampovich—-Myasnikov
and Sela provide a complete description of the class of groups that share the elemen-
tary theory of the non-Abelian free groups. These extend beyond the class of non-
Abelian free groups and are called the elementary free groups. In Chapter 10 we con-
sider the general theory of the elementary free groups and present some properties
that go beyond what is true in free groups. It is known that the surface groups of high
enough genus are elementary free and this provides a method to prove results in sur-
face groups that are otherwise quite inaccesible and difficult. We discuss this also in
Chapter 10.

Finally in Chapter 11 we discuss a large body of results concerning discriminating
groups, a class of groups introduced by G.Baumslag, Myasnikov and Remeslennikov
as a by-product of the development of algebraic geometry.

We hope that the book will find good use among the group theoretic and logic
community.

We would like to thank people who have looked over portions of the book and
helped us with the preparation including Gilbert Baumslag and Olga Kharlampovich.
Especially we thank Anja Moldenhauer who carefully looked over the chapters and
prepared the diagrams and figures.

Ben Fine

Anthony Gaglione
Alexei Myasnikov
Gerhard Rosenberger
Dennis Spellman
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1 Group theory and logic: introduction

1.1 Group theory and logic

The algebraic concept of a group and eventually the discipline of group theory arose
in the early nineteenth century initially from the solution by Galois to the problem
of solvability by radicals. This early work led primarily to finite groups and specifi-
cally to permutation groups, although as Cayley’s Theorem points out this is really
no restriction. Later, infinite groups became prominent through their use in Geometry
and Klein’s Erlanger Program (1876). Continuous groups were introduced by Lie and
others to extend the methods of Galois for algebraic equations to the solutions of dif-
ferential equations. Almost concurrently with the introduction of continuous groups,
infinite discrete groups arose as tools in the study of combinatorial topology as in-
troduced by Poincare. In addition, infinite discrete groups also became prominent in
complex analysis via the work of Fricke and Klein on discrete groups of motions of the
hyperbolic plane (Fuchsian groups). As these group objects were introduced through
algebra, topology, geometry and analysis it became clear that there were strong inter-
actions with formal logic. Each of the concrete examples of groups, mentioned above,
permutation groups, matrix groups, groups of geometric transformations etc. are mod-
els in the sense of formal logic of abstract logical structures and languages. These ties
became even clearer in the twentieth century as the study of mathematical logic be-
came formalized.

This book will concentrate on the interactions between group theory and logic and
will focus primarily on infinite discrete groups. We will deal with ideas and extensions
of concepts arising around the Tarski Problems and their solution. The statements of
the Tarski problems will be explained in the next section. First however we introduce
some material that is needed to describe these problems.

The study of infinite discrete group theory essentially uses combinatorial group
theory. This subdiscipline, within group theory, can roughly be described as the study
of groups via group presentations. A presentation for a group G consists of a set of
generators {g, } for G from which any element of G can be generated as a word or ex-
pression in the {g,} together with a set of relations on these generators from which
any part of the group table can be constructed. In Chapter 2 we will examine com-
binatorial group theory in detail. Although a group presentation is a succinct way to
express a group, it was clear from the beginnings of the discipline, that working with
group presentations required some detailed algorithmic knowledge and certain deci-
sion questions.

In 1910 Max Dehn, as part of his work with group presentations for the funda-
mental groups of orientable surfaces, presented the three most fundamental decision
problems. The first of these is the word problem or identity problem. This is given as
follows:
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(1) Word Problem: Suppose G is a group given by a finite presentation. Does there exist
an algorithm to determine if an arbitrary word W in the generators of G defines the
identity element of G?

Specifically if
G=(gpi= l,...,n;Rj =1j=1,...,m)

is a finite presentation for G and W(g,,) is an arbitrary word in the generators of G, can
one decide algorithmically, in a finite number of steps, whether W(g, ) represents the
identity in G or not. If such an algorithm exists we say that G has a solvable word prob-
lem. If not, G has an unsolvable word problem. Dehn presented a geometric method to
show that the fundamental group of an orientable surface of genus g > 2, which
we denote by S, has a solvable word problem. In particular he gave an algorithm
which systematically reduced the length of any word equal to the identity in 7(S g).
If a particular word’s length is greater than 1 and cannot be reduced then that word
does not represent the identity. Such an algorithm is now called a Dehn algorithm.
Subsequently small cancellation theory, (see Chapter 3), was developed to determine
additional groups that have Dehn algorithms. More recently it was shown that finitely
presented groups with Dehn algorithms are precisely the word-hyperbolic groups of
Gromov (see Chapter 2). In 1955 Novikov [205] and independently Boone [34] proved
that, in general. the word problem is unsolvable, that is, there exist finitely presented
groups with unsolvable word problems. Hence questions about word problems now
focus on which particular classes of groups have solvable word problems. As decribed
by Magnus (see [178]), given the Novikov-Boone result, any solution of the word prob-
lem is actually a triumph over nature.
The second fundamental decision problem is the conjugacy problem given by:

(2) Conjugacy Problem: Suppose G is a group given by a finite presentation. Does there
exist an algorithm to determine if an arbitary pair of words u, v in the generators of G
define conjugate elements of G?

A solution of the conjugacy problem implies a solution of the word problem. Hence it
follows from the Novikov-Boone result that the conjugacy problem is unsolvable in
general. It has been shown further (see [178] and [186]) that there do exist finitely pre-
sented groups with solvable word problems and unsolvable conjugacy problems. As
for the word problem, results on the conjugacy problem, concentrate on which groups,
or classes of groups, do have solvable conjugacy problems. In particular many small
cancellation groups also have solvable conjugacy problems. Geometric techniques
were introduced into small cancellation theory to mimic Dehn’s original approach and
prove these results for small cancellation groups.

The final fundamental decision problem is the most difficult. It is the isomorphism
problem,

(3) Isomorphism Problem: Does there exist an algorithm to determine given two ar-
bitary finite presentations whether the groups they present are isomorphic or not?



