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Preface

The principle that informs this book. This is a book on differential geometry
that uses the method of moving frames and the exterior calculus throughout.
That may be common to a few works. What is special about this one is the
following. After introducing the basic theory of differential forms and pertinent
algebra, we study the “flat cases” known as affine and Euclidean spaces, and
simple examples of their generalizations. In so doing, we seek understanding
of advanced concepts by first dealing with them in simple structures. Differen-
tial geometry books often resort to formal definitions of bundles, Lie algebras,
etc. that are best understood by discovering them in a natural way in cases
of interest. Those books then provide very recondite examples for the illustra-
tion of advanced concepts, say torsion, even though very simple examples exist.
Misunderstandings ensue.

In 1492 Christopher Columbus crossed the Atlantic using an affine connec-
tion in a simplified form (a connection is nothing but a rule to navigate a
manifold). He asked the captains of the other two ships in his small flotilla
to always maintain what he considered to be the same direction: West. That
connection has torsion. Elie Cartan introduced it in the mathematical literature
centuries later [13]. We can learn connections from a practical point of view,
the practical one of Columbus. That will help us to easily understand concepts
like frame bundle, connection, valuedness, Lie algebra, etc., which might oth-
erwise look intimidating. Thus, for example, we shall slowly acquire a good
understanding of affine connections as differential 1—forms in the affine frame
bundle of a differentiable manifold taking values in the Lie algebra of the affine
group and having such and such properties. Replace the term affine with the
terms Euclidean, conformal, projective, etc. and you have entered the theories
of Euclidean, projective, conformal ... connections.

Cartan’s versus the modern approach to geometry. It is sometimes stated
that E. Cartan’s work was not rigorous, and that it is not possible to make it
so. This statement has led to the development of other methods to do differ-
ential geometry, full of definitions and distracting concepts; not the style that
physicists like.

Yeaton H. Clifton was a great differential topologist, an opinion of this author
which was also shared by the well known late mathematician S.-S. Chern in
private conversation with this author. Clifton had once told me that the only
thing that was needed to make rigorous Cartan’s theory of connections was

ix
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to add a couple of definitions. A few years later, upon the present author’s
prodding, Clifton delivered on his claim. To be precise, he showed that just
a major definition and a couple of theorems were needed. The proof is in the
pudding. It is served in the last section of chapter 8 and in the second section
of chapter 9.

Unfortunately, Cartan’s approach has virtually vanished from the modern
literature. Almost a century after his formulation of the theory of affine and
Euclidean connections as a generalization of the geometry of affine and Eu-
clidean spaces [11], [12], [14], an update is due on his strategy for the study
of generalized spaces with the method of the moving frame [20]. We shall first
study from the perspective of bundles and integrability of equations two flat
geometries (their technical name is Klein geometries) and then proceed with
their Cartan generalization. In those Klein geometries, affine and Euclidean,
concepts like equations of structure already exist, and the mathematical expres-
sion of concepts like curvature and torsion already arise in full-fledged form. It
simply happens that they take null values.

Mathematical substance underlying the notation. There is a profound dif-
ference between most modern presentations and ours. Most authors try to fit
everything that transforms tensorially into the mold of (p, q)—tensors (p times
contravariant and ¢ times covariant). Following Kéahler in his generalization of
Cartan’s calculus, [46], [47], [48], we do not find that to be the right course of
action. Here is why.

Faced with covariant tensor fields that are totally skew-symmetric, the mod-
ern approach that we criticize ignores that the natural derivative of a tensor field,
whether skew-symmetric or not, is the covariant derivative. They resort to ex-
terior derivatives, which belong to exterior algebra. That is unnatural and only
creates confusion. Exterior differentiation should be applied only to exterior
differential forms, and these are not skew-symmetric tensors. They only look
that way.

Covariant tensor fields have subscripts, but so do exterior differential forms.
For most of the authors that we criticize, the components of those two types of
mathematical objects have subscripts, which they call g indices. But not all the ¢
indices are born equal. There will be skew-symmetry and exterior differentiation
in connection with some of them — “differential form” subsecripts— but not in
connection with the remaining ones, whether they are skew-symmetric with
respect to those indices or not. They are tensor subscripts. Like superscripts,
they are associated with covariant differentiation.

Correspondingly, the components of quantities in the Cartan and Kahler
calculus have —in addition to a series of superscripts— two series of subscripts,
one for integrands and another one for multilinear functions of vectors. This is
explicitly exhibited in Kahler [46], [47], [48].

The paragon of quantities with three types of indices. Affine curvature is
a (1,1)—tensor-valued differential 2—form. The first “1” in the pair is for a
superscript, and the other one is for a subscript. Torsions are (1,0)—valued
differential 2—forms and contorsions are (1, 1)—valued differential 1—forms.



PREFACE xi

Let v represent vector fields and let d be the operator that Cartan calls
exterior differentiation. dv is a vector-valued differential 1—form, and ddv is a
vector-valued differential 2—form. Experts not used to Cartan’s notation need
be informed that ddv is (v*RY, ,,)w™ A w’?e,. Relative to bases of (p = 1,
g = 0)—valued differential 2—forms, the components of ddv are (v“R;)‘l )‘2).
One can then define a (1,1)—valued differential 2—form whose components are
the Ri\a ’s, and whose evaluation on v (responding to the ¢ = 1 part of the
valuedness) yields ddv. Hence, the traditional (p, g)—characterization falls short
of the need for a good understanding of issues concerned with the curvature
differential form.

Bundles are of the essence. The perspective of valuedness that we have just
mentioned is one which best fits sections of frame bundles, and transformations
relating those sections. Lest be forgotten, the set of all inertial frames (they
do not need to be inertial, but that is the way in which they appear in the
physics literature) constitutes a frame bundle. Grossly speaking, a bundle is
a set whose elements are organized like those inertial frames are. The ones at
any given point constitute the fiber at that point. We have identical fibers at
different points. There must be a group acting in the bundle (like Poincaré’s is
in our example), and a subgroup acting in the fibers (the homogenous Lorentz
group in our example).

An interesting example of section of a bundle is found in cosmology. One
is computing in a particular section when one refers quantities to the frame of
reference of matter at rest in the large.

A section is built with one and only one frame from each fiber, the choice
taking place in a continuous way. But, for foundational purposes, it is better
to think in terms of the bundle than of the sections. At an advanced level, one
speaks of Lie algebra valuedness of connections, the Lie algebra being a vector
space of the same dimension as the bundle. All this is much simpler than it
sounds when one really understands Euclidean space. We will.

It is unfortunate that books on the geometry of physics deal with connections
valued in Lie algebras pertaining to auxiliary bundles (i.e. not directly related
to the tangent vectors) and do not even bother with the Lie algebras of bundles
of frames of tangent vectors. Which physicist ever mentions what is the Lie
algebra where the Levi-Civita connection takes its values? Incidentally, the
tangent vectors themselves constitute a so called fiber bundle, each fiber being
constituted by all tangent vectors at any given point. It is the tangent bundle.

This author claims that the geometry of groups such as SU(3) and U(1) x
SU (2) fits in appropriately extended tangent bundle geometry, if one just knows
where to look. One does not need auxiliary bundles. That will not be dealt with
in this book, but in coming papers. This book will tell you whether I deserve
your trust and should keep following me where I think that the ideas of Einstein,
Cartan and Kahler take us.

Assume there were a viable option of relating U(1) x SU(2) x SU(3) to
bundles of tangent vectors, their frames, etc. It would be unreasonable to
remain satisfied with auxiliary bundles (Yang-Mills theory). In any case, one
should understand “main bundles geometry” (i.e. directly related to the tangent
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bundle) before studying and passing judgement on the merits and dangers of
Yang-Mills theory.

Specific features distinguishing this book are as follows:

1. Differential geometry is presented from the perspective of integrability,
using so called moving frames in frame bundles. The systems of differential
equations in question emerge in the study of affine and Euclidean Klein geome-
tries, those specific systems being integrable.

2. In this book, it does not suffice whether the equations of the general
case (curved) have the appropriate flat limit. It is a matter of whether we use
in the general case concepts which are the same or as close as possible to the
intuitive concepts used in flat geometry. Thus, the all-pervasive definition of
tangent vectors as differential operators in the modern literature is inimical to
our treatment.

3. In the same spirit of facilitating understanding by non-mathematicians,
differential forms are viewed as functions of curves, surfaces and hypersurfaces
[65] (We shall use the term hypersurface to refer to manifolds of arbitrary dimen-
sion that are not Klein spaces). In other words, they are not skew-symmetric
multilinear functions of vectors but cochains.

This book covers almost the same material as a previous book by this author
[85] except for the following:

1. The contents of chapters 1, 3 and 12 has been changed or extended very
significantly.

2. We have added the appendices. Appendix A presents the classical theory
of curves and surfaces, but treated in a totally novel way through the intro-
duction of the concept of canonical frame field of a surface (embedded in 3-D
Euclidean space). We could have made it into one more chapter, but we have not
since connections connect tangent vectors in the book except in that appendix;
vectors in 3-D Euclidean space that are not tangent vectors to the specific curves
and surfaces being considered are nevertheless part of the subject matter.

Appendix B speaks of the work of the mathematical geniuses Elie Cartan
and Hermann Grassmann, in order to honor the enormous presence of their ideas
in this book. Appendix C is the list of publications of this author for those who
want to deal further into topics not fully addressed in this book but directly
related to it. You can find there papers on Finsler geometry, unification with
teleparallelism, the Kéhler calculus, alternatives to the bundle of orthonormal
frames, etc.

3. Several sections have been added at the end of several chapters, touching
subjects such as diagonalization of metrics and orthonormalization of frames,
Clifford and Lie algebras, etc.
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