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Preface to the Second Edition

As applications of the Anzahl theorems in the geometry of classical groups
over finite fields some critical problems of finite vector spaces, Moor-
Penrose generalized inverses of matrices over a finite field, and the repre-
sentation of a form (bilinear, alternate, hermitian, or quadratic, etc.) by
another form of the same kind over a finite field are added in this edition.

Wan Zhexian
Beijing, 2002






Preface

This monograph is a comprehensive survey of the results obtained on the
geometry of classical groups over finite fields mainly in the 1960s and early
1990s.

For the convenience of the readers I start with the affine geometry and
projective geometry over finite fields in Chapters 1 and 2, respectively.
Among other things, the affine classification of quadrics is included in
Chapter 1, and conics and ovals are studied in detail in Chapter 2. From
Chapter 3 and onwards the geometries of symplectic, pseudo-symplectic,
unitary, and orthogonal groups are studied in succession. The book ends
with two appendices, on the axiomatic projective geometry, and on polar
spaces and finite generalized quadrangles, respectively.

Now I shall say a few words about the problems we are going to study in
Chapters 3-7, and in addition give some historical remarks.

Let Fy be the finite field with g elements, where ¢ is a power of a prime,
F{™ be the n-dimensional row vector space over F,, and GL,(F,) be the
general linear group of degree n over F,. It is well-known that GL,(IF,;)
has an action on ]Fq(") and an induced action on the subspaces of Fq("%,
which are thus subdivided into orbits under the action of GL, (F;). It is

natural to ask:

(i) How should the orbits be described?
(i) How many orbits are there?

(iii) What are the lengths of the orbits?

(iv) What is the number of subspaces in any orbit contained in a given
subspace?

The answers to these questions are classical and well-known for GL,(F,),
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but a natural question arises: If GL,(IF;) is replaced by any one of the
other classical groups: the symplectic group Spo,(F;) (where n = 2v),
the pseudo-symplectic group Psg,15(F;) (where ¢ is even, n = 2v + §,
and § = 1 or 2), the unitary group U,(F,;) (where ¢ is a square), and the
orthogonal group Osg,45(F;) (where n = 2v + 4§ and d = 0,1, or 2), then
what will the answers of the four problems mentioned above be? This is
what we shall analyse in Chapters 3-7.

In 1937 E. Witt studied problem (i) for the orthogonal group O, (F,S)
defined by an n X n nonsingular symmetric matrix S over any field F
of characterstic # 2. His famous theorem asserts that two subspaces P
and P, of F( belong to the same orbit under the action of O, (F,S) if
and only if they have the same dimension and P;S'P; and PSP, are
cogredient, where P; and P, also denote matrix representations of the
subspaces P and P;, respectively. Later C. Arf, J. Dieudonné, L. K. Hua,
et al. extended Witt’s theorem to other classical groups.

In 1958 B. Segre studied problem (iii) for orthogonal groups over any
finite field F; but he restricted himself to consider only totally isotropic
and totally singular subspaces where ¢q is odd and even, respectively. He
used the geometrical method and geometrical language. In his address
at the International Congress of Mathematicians, Edinburgh, 1958, he
announced his formula for the number of subspaces of a given dimension
lying on a non-degenerate quadratic in the projective space over any finite
field without any restriction on its characteristic.

In the mid-1960s problem (iii) was attacked by three of my students at
that time, Z. Dai, X. Feng, and B. Yang, and myself. We obtained the
closed formulas for the lengths of all the orbits of subspaces under the
action of the symplectic, unitary, and orthogonal groups over finite fields.
Our method is algebraic. Closed formulas for problem (iv), i.e., for the
number of subspaces in any orbit contained in a given subspace were also
obtained by myself in 1966.

In the early 1990s I studied problems (i) and (ii). Conditions satisfied by
the numerical invariants characterizing the orbits of subspaces under the
symplectic, unitary, and orthogonal groups over finite fields were obtained
and then the number of orbits was computed. Problems (i) — (iii) for the
pseudo-symplectic groups over finite fields of characteristic 2 were stud-
ied together with Y. Liu. Moreover, I also studied problem (iv) for the
pseudo-symplectic group and problems (i) — (iv) for the singular symplec-
tic, pseudo-symplectic, unitary, and orthogonal groups.
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My interest in the geometry of classical groups over finite fields was arisen
by block designs in the mid-1960s and by authentication codes in the
early 1990s. By using it, many interesting block designs and authenti-
cation codes can be constructed. However, due to the limitation of the
thickness of the book only some simple authentication codes constructed
from the geometry of classical groups over finite fields are included in this
monograph as examples. Using the geometry of classical groups over finite
fields one can also construct projective codes with a few distinct weights
and study the weight hierarchies of them; they are, however, not included
in this monograph.

A large portion of the book is adopted from the lecture notes of a course
entitled “Finite Geometry” which I gave at the Department of Information
Theory, Lund University. I would like to express my sincere gratitude to
Professor Rolf Johannesson who invited me to visit Lund and to give
the course and encouraged me to write the present book. My visit in
Lund is most fruitful and many of the results on the geometry of classical
groups over finite fields that I obtained in Lund are compiled in the present
book. The author is also deeply indebted to Mrs. Lena Mansson for her
beautiful typesetting, careful and hard work, and most of all her patience
and cooperation.

Lund, 1993 Wan Zhexian (Zhe-Xian Wan)
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