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PREFACE TO THE
FIRST EDITION

This book is an outgrowth and a considerable expansion of lectures given
at Brandeis University in 1967-1968 and at Rice University in 1968-1969.
The first four chapters are an attempt to survey in detail some recent
developments in four somewhat different areas of mathematics: geometry
(manifolds and vector bundles), algebraic topology, differential geometry,
and partial differential equations. In these chapters, I have developed various
tools that are useful in the study of compact complex manifolds. My moti-
vation for the choice of topics developed was governed mainly by the
applications anticipated in the last two chapters. Two principal topics
developed include Hodge's theory of harmonic integrals and Kodaira's
characterization of projective algebraic manifolds.

This book should be suitable for a graduate level course on the general
topic of complex manifolds. I have avoided developing any of the theory of
several complex variables relating to recent developments in Stein manifold
theory because there are several recent texts on the subject (Gunning and Rossi,
Hérmander). The text is relatively self-contained and assumes familiarity with
the usual first year graduate courses (including some functional analysis), but
since geometry is one of the major themes of the book, it is developed from
first principles.

Each chapter is prefaced by a general survey of its content. Needless to
say, there are numerous topics whose inclusion in this book would have been
appropriate and useful. However, this book is not a treatise, but an attempt
to follow certain threads that interconnect various fields and to culminate with
certain key results in the theory of compact complex manifolds. In almost
every chapter I give formal statements of theorems which are understandable
in context, but whose proof oftentimes involves additional machinery not
developed here (e.g., the Hirzebruch Riemann-Roch Theorem); hopefully,
the interested reader will be sufficiently prepared (and perhaps motivated) to
do further reading in the directions indicated.

v



vi Preface

Text references of the type (4.6) refer to the 6th equation (or theorem,
lemma, etc.) in Sec. 4 of the chapter in which the reference appears. If the
reference occurs in a different chapter, then it will be prefixed by the Roman
numeral of that chapter, e.g., (I1.4.6.).

I would like to express appreciation and gratitude to many of my col-
leagues and friends with whom I have discussed various aspects of the
book during its development. In particular I would like to mention M. F.
Atiyah, R. Bott, S. S. Chern, P. A. Griffiths, R. Harvey, L. Hérmander,
R. Palais, J. Polking, O. Riemenschneider, H. Rossi, and W. Schmid whose
comments were all very useful. The help and enthusiasm of my students
at Brandeis and Rice during the course of my first lectures, had a lot to
do with my continuing the project. M. Cowen and A. Dubson were very
helpful with their careful reading of the first draft. In addition, I would like
to thank two of my students for their considerable help. M. Windham wrote
the first three chapters from my lectures in 1968-69 and read the first draft.
Without his notes, the book almost surely would not have been started. J.
Drouilhet read the final manuscript and galley proofs with great care and
helped eliminate numerous errors from the text.

I would like to thank the Institute for Advanced Study for the opportunity
to spend the year 1970-71 at Princeton, during which time I worked on the
book and where a good deal of the typing was done by the excellent Institute
staff. Finally, the staff of the Mathematics Department at Rice University
was extremely helpful during the preparation and editing of the manuscript
for publication.

Houston R. O'. Wells, Jr.
December 1972



PREFACE TO THE
SECOND EDITION

In this second edition I have added a new section on the classical
finite-dimensional representation theory for 8[(2,C). This is then used to
give a natural proof of the Lefschetz decomposition theorem, an observation
first made by S. S. Chern. H. Hecht observed that the Hodge *-operator is
essentially a representation of the Weyl reflection operator acting on 3[(2,C)
and this fact leads to new proofs (due to Hecht) of some of the basic Kéhler
identities which we incorporate into a completely revised Chapter V. The
remainder of the book is generally the same as the first edition, except that
numerous errors in the first edition have been corrected, and various
examples have been added throughout.

I would like to thank my many colleagues who have commented on the
first edition, which helped a great deal in getting rid of errors. Also, I would
like to thank the graduate students at Rice who went carefully through the
book with me in a seminar. Finally, I am very grateful to David Yingst and
David Johnson who both collated errors, made many suggestions, and helped
greatly with the editing of this second edition.

Houston R. O. Wells, Jr.
July 1979
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CHAPTER 1

MANIFOLDS
AND
VECTOR BUNDLES

There are many classes of manifolds which are under rather intense
investigation in various fields of mathematics and from various points of
view. In this book we are primarily interested in differentiable manifolds
and complex manifolds. We want to study (a) the “‘geometry” of manifolds,
(b) the analysis of functions (or more general objects) which are defined on
manifolds, and (c) the interaction of (a) and (b). Our basic interest will be
the application of techniques of real analysis (such as differential geometry
and differential equations) to problems arising in the study of complex mani-
folds. In this chapter we shall summarize some of the basic definitions and
results (including various examples) of the elementary theory of manifolds
and vector bundles. We shall mention some nontrivial embedding theorems
for differentiable and real-analytic manifolds as motivation for Kodaira's
characterization of projective algebrajc manifolds, one of the principal results
which will be proved in this book (see Chap. VI). The “geometry” of a mani-
fold is, from our point of view, represented by the behavior of the tangent
bundle of a given manifold. In Sec. 2 we shall develop the concept of the
tangent bundle (and derived bundles) from, more or less, first principles.
We shall also discuss the continuous and C* classification of vector bundles,
which we shall not use in any real sense but which we shall meet a version of
in Chap. IlI, when we study Chern classes. In Sec. 3 we shall introduce al-
most complex structures and the calculus of differential forms of type
(p, 9), including a discussion of integrability and the Newlander-Nirenberg
theorem.

General background references for the material in this chapter are Bishop
and Crittenden [1], Lang [1], Narasimhan [1], and Spivak [1], to name a few
relatively recent texts. More specific references are given in the individual
sections. The classical reference for calculus on manifolds is de Rham [1].
Such concepts as differential forms on differentiable manifolds, integration
on chains, orientation, Stokes’ theorem, and partition of unity are all covered
adequately in the above references, as well as elsewhere, and in this book
we shall assume familiarity with these concepts, although we may review
some specific concept in a given context.

1



2 Manifolds and Vector Bundles Chap. I

1. Manifolds

We shall begin this section with some basic definitions in which we shall
use the following standard notations. Let R and C denote the fields of real
and complex numbers, respectively, with their usual topologies, and let X
denote either of these fields. If D is an open subset of K", we shall be con-
cerned with the following function spaces on D:

(a) K=R:

(1) &(D) will denote the real-valued indefinitely differentiable
functions on D, which we shall simply call C* functions on D;i.e., f € &§(D)
if and only if fis a real-valued function such that partial derivatives of all
orders exist and are continuous at all points of D [§(D) is often denoted by
C=(D)].

(2) @&(D) will denote the real-valued real-analytic functions on
D; ie., Q(D) < & D), and f € Q(D) if and only if the Taylor expansion of
/S converges to fin a neighborhood of any point of D.

(b) K=C:

(1) o(D) will denote the complex-valued holomorphic functions
on D, ie., if (z,,...,z,) are coordinates in C", then f € O(D) if and only
if near each point z° € D, fcan be represented by a convergent power series
of the form

S@=fGpwnz)= T anafe =D a2

(See, e.g., Gunning and Rossi [1], Chap. I, or Hérmander (2], Chap. II,
for the elementary properties of holomorphic functions on an open set in
Cr). These particular classes of functions will be used to define the particular
classes of manifolds that we shall be interested in.

A topological n-manifold is a Hausdorff topological space with a count-
able basist which is locally homeomorphic to an open subset of R™. The integer
n is called the topological dimension of the manifold. Suppose that § is one
of the three K-valued families of functions defined on the open subsets of K”
described above, where we let §(D) denote the functions of § defined on
D, an open set in K”. [That is, $(D) is either &(D), @(D), or ©(D). We shall
only consider these three examples in this chapter. The concept of a family
of functions is formalized by the notion of a presheaf in Chap. 11.]

Definition 1.1: An §-structure, $,, on a k-manifold M is a family of
K-valued continuous functions defined on the open sets of M such that

tThe additional assumption of a countable basis {*‘countable at infinity”) is important
for doing analysis on manifolds, and we incorporate it into the definition, as we are less
interested in this book in the larger class of manifolds.
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(a) For every p € M, there exists an open neighborhood U of p and a
homeomorphism A : U — U’, where U'is open in K", such that for any open
set VU

f:V—Ke §ifand only if fo ™' € §(h(V)).

(b) Iff:U— K, where U = U, U, and U, is open in M, then f € §,,
if and only if f |, € §,, for each /.

It follows clearly from (a) that if X = R, the dimension, k, of the topologi-
cal manifold is equal to n, and if K = C, then k = 2n. In either case n will
be called the K-dimension of M, denoted by dim,M = n (which we shall
call real-dimension and complex-dimension, respectively). A manifold with
an §-structure is called an §-manifold, denoted by (M, §,,), and the ele-
ments of §,, are called §-functions on M. An open subset U = M and a
homeomorphism 4 : U — U’ = K" as in (a) above is called an §-coordinate
system.

For our three classes of functions we have defined

(@) § = &: differentiable (or C*=) manifold, and the functions in &,, are
called C* functions on open subsets of M.

(b) 8 = Q: real-analytic manifold, and the functions in @,, are called
real-analytic functions on open subsets of M.

(c) 8 = 0: complex-analytic (or simply complex) manifold, and the
functions in ©,, are called holomorphic (or complex-analytic functions) on M.

We shall refer to €,,, @,,, and ©,, as differentiable, real-analytic, and complex
Structures respectively.

Definition 1.2:
(@) An §-morphism F : (M, §,,) — (N, §) is a continuous map, F: M
—— N, such that

f e 8y implies fo F e §,,.

(b) An S-isomorphism is an $-morphism F: (M, §y) — (N, §x) such
that F : M -+ N is a homeomorphism, and

F~1' (N, 8y) — (M, §,,) is an §-morphism.

It follows from the above definitions that if on an §-manifold (M, §,,)
we have two coordinate systems A,: U, -- K" and h,: U, — K" such that
U, N U, # &, then

hyohi':h (U, N U,) »h(U, N U,)isan §-isomorphism

(k1) on open subsets of (K", §x-).
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Conversely, if we have an open covering {U,},., of M, a topological mani-
fold, and a family of homeomorphisms {h,: U, — U, = K"},., satisfying
(1.1), then this defines an §-structure on M by setting §,, = {f: U — K}
such that Uis openin M and fo h;!' € §h(UN U,)) foralla € A4;i.e.,
the functions in §,, are pullbacks of functions in § by the homeomorphisms
{h.}ac4- The collection {(U,, h,)}.c is called an atlas for (M, §,,). .

In our three classes of functions, the concept of an §-morphism and
S-isomorphism have special names:

(a) § = &: differentiable mapping and diffeomorphism of M to N.

(b) 8 = Q: real-analytic mapping and real-analytic isomorphism (or
bianalytic mapping) of M to N.

() 8§ = 0: holomorphic mapping and biholomorphism (biholomorphic
mapping) of M to N.

It follows immediately from the definition above that a differentiable mapping
f M — N,

where M and N are differentiable manifolds, is a continuous mapping of
the underlying topological space which has the property that in local coordi-
nate systems on M and ¥, f can be represented as a matrix of C= functions.
This could also be taken as the definition of a differentiable mapping. A _simi-
lar remark holds for the other two categories.

Let N be an arbitrary subset of an $§-manifold M ; then an §-function on
N is defined io be the restriction to N of an §-function defined in some open
set containing &, and §,,|~ consists of all the functions defined on relatively
open subsets of N which are restrictions of §-functions on the open subsets
of M.

Definition 1.3: Let N be a closed subset of an §-manifold M; then N is
called an §-submanifold of M if for each point x, € N, there is a coordinate
system h: U — U’ = K", where x, € U, with the property that k|, is
mapped onto U’ N K*, where 0 < k < n. Here K* — K" is the standard
embedding of the linear subspace K* into K*, and k is called the K-dimension
of N, and n — k is called the K-codimension of N.

It is easy to see that an §-submanifold of an §-manifold M is itself an
S$-manifold with the $-structure given by §,|y. Since the implicit function
theorem is valid in each of our three categories, it is easy to verify that the
above definition of submanifold coincides with the more common one that
an §-submanifold (of k dimensions) is a closed subset of an §-manifold M
which is locally the common set of zeros of n — k §-functions whose Jacobian
metrix has maximal rank.

It is clear that an n-dimensional complex structure on a manifold induces
a 2n-dimensional real-analytic structure, which, likewise, induces a 2n-
dimensional differentiable structure on the manifold. One of the questions
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we shall be concerned with is how many different (i.e., nonisomorphic)
complex-analytic structures induce the same differentiable structure on a
given manifold ? The analogous question of how many different differentiable
structures exist on a given topological manifold is an important problem in
differential topology.

What we have actually defined is a category wherein the objects are §-
manifolds and the morphisms are §-morphisms. We leave to the reader the
proof that this actually is a category, since it follows directly from the defini-
tions. In the course of what follows, then, we shall use three categories—the
differentiable (§ = &), the real-analytic (§ = @), and the holomorphic
(8§ = 0) categories—and the above remark states that each is a subcategory
of the former.

We now want to give some examples of various types of manifolds.

Example 1.4 (Euclidean space): K~ (R", C"). Foreveryp € K*, U = K"
and h = identity. Then R" becomes a real-analytic (hence differentiable)
manifold and C” is a complex-analytic manifold.

Example 1.5: If (M, §,,) is an §-manifold, then any open subset U of
M has an §-structure, §, = {f |y S € Su}

Example 1.6 (Projective space): If Vis a finite dimensional vector space
over K, thent P(V) := {the set of one-dimensional subspaces of V} is called
the projective space of V. We shall study certain special projective spaces,
namely '

P(R) := P(R"")
P,(C) := P(C™").

We shall show how P (R) can be made into a differentiable manifold.
There is a natural map n: R**' — {0} — P (R) given by

a(x) =n(xy, ...,x,):= [subspaée spanned by x = (x,,...,x,) € R"*'}.

The mapping n is onto; in fact, @|s |,crmi s 1) IS Onto. Let P (R) have
the quotient topology induced by the map =n; i.e., U < P,(R) is open if and
only if z7'(U) is open in R"*' — {0}. Hence = is continuous and P(R) is a
Hausdorff space with a countable basis. Also, since

). S"—» P (R)

is continuous and surjective, P (R) is compact.
If x = (x,,...,x,) € R*' — {0}, then set

n(x) = [xq, ..., X,]
We say that (x,, ..., x,) are homogeneous coordinates of [x,, ..., x,]. If
(x5, ..., x,) is another set’ of homogeneous coordinates of [x,, ..., x,],

t := means that the object on the left is defined to be equal to the object on the right.
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then x, = tx; for some t € R — {0}, since [x,, ..., x,] is the one-dimen-
sional subspace spanned by (x,, ..., x,) or (xy, ..., x.). Hence also n(x) =
n(tx) for t € R — {0}. Using homogeneous coordinates, we can define a
differentiable structure (in fact, real-analytic) on P,(R) as follows. Let

U,={SeP,(R):S = [xo, ..., x,] and x, 7# 0}, fora =0, ...,n

Each U, is open and P,(R) = (_Ji_, U, since (x,, ..., x,) € R**i — [0}.
Also, define the map A,: U, — R" by setting

— (X Xa-1 Xa+1 Xn n
h(lXqr ., x,]) = <;n_x_x_x_) e R".
Note that both U, and A, are well defined by the relation between different
choices of homogeneous coordinates. One shows easily that A, is a homeo-
morphism and that A, o h;' is a diffecomorphism; therefore, this defines a
differentiable structure on P (R). In exactly this same fashion we can define
a differentiable structure on P(¥) for any finite dimensional R-vector space
¥V and a complex-analytic structure on P(V) for any finite dimensional C-
vector space V.

Example 1.7 (Matrices of fixed rank): Let 91, ,(R) be the kK X n matrices
with real coefficients. Let M, (R) be the k x n matrices of rank k(k < n).
Let M7 (R) be the elements of 91, ,(R) of rank m (m < k). First, M, .(R)
can be identified with R**, and hence it is a differentiable manifold. We know
that M, .(R) consists of those k x n matrices for which at least one k x k
minor is nonsingular; i.e.,

M, (R) = _Lljl{A € 9N, (R): det 4, = 0},

where for each 4 € 9, (R) we let {4,,..., 4} be a fixed ordering of the
k x k minors of A. Since the determinant function is continuous, we see
that M, .(R) is an open subset of 97, ,(R) and hence has a differentiable
structure induced on it by the differentiable structure on 91, ,(R) (see Example
1.5). We can also define a differentiable structure on M7 ,(R). For convenience
we delete the R and refer to M} ,. For X, € /], we define a coordinate
neighborhood at X, as follows. Since the rank of X is m, there exist permuta-
tion matrices P, Q such that

A, B
PXUQ :[ 0 O:l,
c, D,

where A, is a nonsingular m x m matrix. Hence there exists an € > 0 such
that ||4 — A,|| < € implies A4 is nonsingular, where || 4]} = max,|a,]|,
for A = [a,;]. Therefore let
A B
W =(XeM,, PXQ = - and || 4 — A4,l| < ¢}

Then W is an open subset of 91, ,. Since this is true, U := W N M}, is an
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open neighborhood of X, in M7} , and will be the necessary coordinate neigh-
borhood of X,. Note that

A B
X € Uifandonly if D = CA™'B, where PXQ:\:C DJ.

This follows from the fact that

oI, O]A BJ_{'AB ]
L—CA" I,..llc p] 0 D—ca'B

[ I, 0 7
L_CA_l Ik—mJ

is nonsingular (where /; is the j x j identity matrix). Therefore
A B ‘:A B }
and
C D 0 D—-CA'B
have the same rank, but
A B
O D—-CA'B

has rank m if and only if D — CA"'B = 0.

We see that M7, actually becomes a manifold of dimension m(n + k —
m) by defining

and

h: U > RM'v(u—m)mv(k-m)m — Rm(ntk—m)’

h(X) = [A B] € Rmintk-m for PXQ = 4 5 ’
cC 0 C D

where

as above. Note that we can define an inverse for 4 by

ol 5T e

Therefore A is, in fact, bijective and is easily shown to be a homeomorphism.
Moreover, if 1, and h, are given as above,

k(e o ])=1e o)

A B A B
N }Q;'Qz{ : ]
C, C,A;'B, c, D,

and these maps are clearly diffeomorphisms (in fact, real-analytic), and so
M7 (R) is a differentiable submanifold of 91, ,(R). The same procedure can
be used to define complex-analytic structures on 91, (C), M, ,(C), and
M7 (C), the corresponding sets of matrices over C.

where
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Example 1.8 (Grassmannian manifolds): Let V be a finite dimensional
K-vector space and let G, (V) := {the set of k-dimensional subspaces of ¥V},
for k < dim,V. Such a G (V) is called a Grassmannian manifold. We shall
use two particular Grassmannian manifolds, namely

GiaR):= G,R)  and G, ,(C):= G,(C".

The Grassmannian manifolds are clearly generalizations of the projective

spaces [in fact, P(V) = G,(V); see Example 1.6] and can be given a manifold

structure in a fashion analogous to that used for projective spaces.
Consider, for example, G, ,(R). We can define the map

T Mk,n(R) = Gk,n(R)’
where

a,

n(A) = n| - | := {k-dimensional subspace of R" spanned by
the row vectors {a,} of A}.
ay

We notice that for g € GL(k, R) (the k X k nonsingular matrices) we have
n(gA) = n(A) (where gA is matrix multiplication), since the action of g
merely changes the basis of #(4). This is completely analogous to the pro-
jection n: R**! — {0} — P (R), and, using the same reasoning, we see that
G, .(R) is a compact Hausdorff space with the quotient topology and that
7 is a surjective, continuous open map.t :

We can also make G, ,(R) into a differentiable manifold in a way similar
to that used for P (R). Consider 4 € M, ,andlet{A4,, ..., A} be the collec-
tion of k X k minors of 4 (see Example 1.7). Since 4 has rank k, A4, is
nonsingular for some 1 << « </ and there is a permutation matrix P, such
that

A'Pu = [Aa‘:fu]’

where A4, is a k X (n — k) matrix. Note that if g € GL(k, R), then g4, is a
nonsingular minor of g4 and g4, = (gA4),. Let U, ={S € G, ,(R): S =
n(A), where A, 1s nonsingular}. This is well defined by the remark above
concerning the action of GL(k, R) on M, ,(R). The set U, is defined by the
condition det A, = 0; hence it is an open setin G, ,(R), and {U,},., covers
G,..(R). We define a map

hy: Uy, —> R¥O-8
by setting
h.(ﬂ(A)) — A;‘/T, e Rxt-h

where AP, = [A.A,]. Again this is well defined and we leave it to the reader
to show that this does, indeed, define a differentiable structure on G, ,(R).

tNote that the compact set {4 € My, (R): A ‘A = I} is analogous to the unit sphere
in the case kK = 1 and is mapped surjectively onto Gy, (R).
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Example 1.9 (Algebraic submanifolds): Consider P, = P,(C), and let
-H={lz4y...,2) € Prayzy+ -+ + a,z, =0},

where (a,, ..., a,) € C**' — {0}. Then H is called a projective hyperplane.

We shall see that H is a submanifold of P, of dimension n — 1. Let U, be

the coordinate systems for P, as defined in Example 1.6. Let us consider

U, N H, and let ({;,...,{,) be coordinates in C". Suppose that [z, ..., z,]
€ H N U,; then, since z, = 0, we have

z z .
al_l_{_ .o +a"_n.: —ay,
Zo Zy

which implies that if { =({,,...,{,) = h,([z,.-..,2,)]), then { satisfies

(1‘2) alCl + e + anCn = _aO’
which is an affine linear subspace of C~, provided that at least one of a, . . .,
a, is not zero. If, however, a, 0 and a, = --- = g, = 0, then it is clear

that there is no point ({,,...,{,) € C" which satisfies (1.2), and hence in
this case U, " H = @ (however, H will then necessarily intersect all the other
coordinate systems [, ..., U,). It now follows easily that H is a submanifold
of dimension n — 1 of P, (using equations similar to (1.2) in the other coordi-
nate systems as a representation for H). More generally, one can consider

V=1{z-.-,2]€ PC):p(2z0,...,2)= -+ =p(24...,2,) =0},

where p,, . . ., p, are homogeneous polynomials of varying degrees. In local
coordinates, one can find equations of the form (for instance, in U,)

p,(l,it k) =0

(1.3) §°’ j°
Z1 Zn ) —
pr(l’ zoa---szo) 01

and V will be a submanifold of P, if the Jacobian matrix of these equations in
the various coordinate systems has maximal rank. More generally, V is called
a projective algebraic variety, and points where the Jacobian has less than
maximal rank are called singular points of the variety.

We say that an §-morphism
S (M, 8§) —> (N, 8x)

of two §-manifolds is an $-embedding if f is an $-isomorphism onto an
S-submanifold of (¥, §,). Thus, in particular, we have the concept of dif-
ferentiable, real-analytic, and holomorphic embeddings. Embeddings are
most often used (or conceived of as) embeddings of an “abstract” manifold
as a submanifold of some more concrete (or morc elementary) manifold.
Most common is the concept of embedding in Euclidean space and in projec-
tive space, which are the simplest geometric models (noncompact and
compact, respectively). We shall state some results along this line to give the
reader some feeling for the differences among the three categories we have
been dealing with. Until now they have behaved very similarly.



