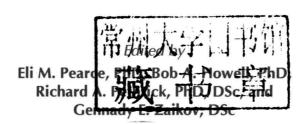

for Engineering and Applied Sciences

Polymeric Materials and Processing

Editors

Eli M. Pearce, PhD Bob A. Howell, PhD Richard A. Pethrick, PhD, DSc Gennady E. Zaikov, DSc



PHYSICAL CHEMISTRY RESEARCH FOR ENGINEERING AND APPLIED SCIENCES

VOLUME 2

Polymeric Materials and Processing

Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada Apple Academic Press Inc. 9 Spinnaker Way Waretown, NJ 08758

©2015 by Apple Academic Press, Inc.

Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

International Standard Book Number-13: 978-1-77188-057-2 (Hardcover)

All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publisher or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

Library and Archives Canada Cataloguing in Publication

Physical chemistry research for engineering and applied sciences / edited by Eli M. Pearce, PhD, Bob A. Howell, PhD, Richard A. Pethrick, PhD, DSc, and Gennady E. Zaikov, DSc.

Includes bibliographical references and index.

Contents: Volume 2. Polymeric materials and processing.

ISBN 978-1-77188-057-2 (v. 2 : bound)

- 1. Chemistry, Physical and theoretical. 2. Chemistry, Technical. 3. Physical biochemistry.
- I. Pearce, Eli M., author, editor II. Howell, B. A. (Bobby Avery), 1942-, author, editor

III. Pethrick, R. A. (Richard Arthur), 1942-, author, editor IV. Zaikov, G. E. (Gennadii Efremovich), 1935-, author, editor

QD453.3.P49 2015

541

C2015-900409-8

Library of Congress Cataloging-in-Publication Data

Physical chemistry research for engineering and applied sciences/Eli M. Pearce, PhD, Bob A. Howell, PhD, Richard A. Pethrick, PhD, DSc, and Gennady E. Zaikov, DSc.

volumes cm

Includes bibliographical references and index.

Contents: volume 1. Principles and technological implications -- volume 2. Polymeric materials and processing -- volume 3. High performance materials and methods

ISBN 978-1-77188-053-4 (alk. paper)

1. Chemistry, Physical and theoretical. 2. Chemistry, Technical. 3. Physical biochemistry. I. Pearce, Eli M. II. Howell, B. A. (Bobby Avery), 1942- III. Pethrick, R. A. (Richard Arthur), 1942- IV. Zaikov, G. E. (Gennadii Efremovich), 1935-

QD453.3.P49 2015

541--dc23

2015000878

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com and the CRC Press website at www.crcpress.com

PHYSICAL CHEMISTRY RESEARCH FOR ENGINEERING AND APPLIED SCIENCES

VOLUME 2

Polymeric Materials and Processing

此为试读,需要完整PDF请访问: www.ertongbook.com

ABOUT THE EDITORS

Eli M. Pearce, PhD

Dr. Eli M. Pearce was the President of the American Chemical Society. He served as Dean of the Faculty of Science and Art at Brooklyn Polytechnic University in New York as well as a Professor of Chemistry and Chemical Engineering. He was the Director of the Polymer Research Institute, also in Brooklyn. At present, he consults for the Polymer Research Institute. As a prolific author and researcher, he edited the *Journal of Polymer Science* (Chemistry Edition) for 25 years and was an active member of many professional organizations.

Bob A. Howell, PhD

Bob A. Howell, PhD, is a Professor in the Department of Chemistry at Central Michigan University in Mount Pleasant, Michigan. He received his PhD in physical organic chemistry from Ohio University in 1971. His research interests include flame-retardants for polymeric materials, new polymeric fuel-cell membranes, polymerization techniques, thermal methods of analysis, polymer-supported organoplatinum antitumor agents, barrier plastic packaging, bioplastics, and polymers from renewable sources.

Richard A. Pethrick, PhD, DSc

Professor R. A. Pethrick, PhD, DSc, is currently a Research Professor and Professor Emeritus in the Department of Pure and Applied Chemistry at the University of Strathclyde, Glasglow, Scotland. He was Burmah Professor in Physical Chemistry and has been a member of the staff there since 1969. He has published over 400 papers and edited and written several books. Recently, he has edited several publications concerned with the techniques for the characterization of the molar mass of polymers and also the study of their morphology. He currently holds a number of EPSRC grants and is involved with Knowledge Transfer Programmes involving three local companies involved in production of articles made out of polymeric materials. His current research involves AWE. He has acted as a consultant for BAE Systems in the area of explosives and a company involved in the production of anticorrosive coatings.

vi About the Editors

Dr. Pethrick is on the editorial boards of several polymer and adhesion journals and was on the Royal Society of Chemistry Education Board. He is a Fellow of the Royal Society of Edinburgh, the Royal Society of Chemistry, and the Institute of Materials, Metal and Mining. Previously, he chaired the 'Review of Science Provision 16-19' in Scotland and the restructuring of the HND provision in chemistry. He was also involved in the creation of the revised regulations for accreditation by the Royal Society of Chemistry of the MSc level qualifications in chemistry. For a many years, he was the Deputy Chair of the EPSRC IGDS panel and involved in a number of reviews of the courses developed and offered under this program. He has been a member of the review panel for polymer science in Denmark and Sweden and the National Science Foundation in the USA.

Gennady E. Zaikov, DSc

Gennady E. Zaikov, DSc, is the Head of the Polymer Division at the N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia, and Professor at Moscow State Academy of Fine Chemical Technology, Russia, as well as Professor at Kazan National Research Technological University, Kazan, Russia.

He is also a prolific author, researcher, and lecturer. He has received several awards for his work, including the Russian Federation Scholarship for Outstanding Scientists. He has been a member of many professional organizations and on the editorial boards of many international science journals.

Physical Chemistry Research for Engineering and Applied Sciences in 3 Volumes

Physical Chemistry Research for Engineering and Applied Sciences:

Volume 1: Principles and Technological Implications

Editors: Eli M. Pearce, PhD, Bob A. Howell, PhD,

Richard A. Pethrick, PhD, DSc, and Gennady E. Zaikov, DSc

Physical Chemistry Research for Engineering and Applied Sciences:

Volume 2: Polymeric Materials and Processing

Editors: Eli M. Pearce, PhD, Bob A. Howell, PhD,

Richard A. Pethrick, DSc, PhD, and Gennady E. Zaikov, DSc

Physical Chemistry Research for Engineering and Applied Sciences:

Volume 3: High Performance Materials and Methods

Editors: Eli M. Pearce, PhD, Bob A. Howell, PhD,

Richard A. Pethrick, DSc, PhD, and Gennady E. Zaikov, DSc

LIST OF CONTRIBUTORS

Yu. O. Andriasyan

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin str., 119334 Moscow, Russia

J. N. Aneli

Laboratory for Polymer materials, Institute of Machine Mechanics, Mindeli Str.10, Tbilisi 0186, Republic Georgia, E-mail: jimaneli@yahoo.com

A. Antonov

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, 119334 Moscow, Russia

Marina Bazunova

Bashkir State University 32 Zaki Validi Street, 450076 Ufa, Republic of Bashkortostan, Russia

Dariusz M. Bieliński

Institute for Engineering of Polymer Materials & Dyes, Department of Elastomers and Rubber Technology, Harcerska 30, 05-820 Piastów, Poland, tel. +4842 6313214, fax +4842 6362543, E-mail: dbielin@p.lodz.pl

R. Y. Deberdeev

Kazan National Research Technological University, 65 Karl Marx str., Kazan 420015, Tatarstan, Russia

Jacek Grams

Institute of General and Ecological Chemistry, Technical University of Łódź, Stefanowskiego 12/16, 90-924 Łódź, Poland

D. O. Gusev

Volgograd State Technical University, 400005, 28 Lenin ave., Volgograd, Russia

R. Jozwik

Military Institute of Chemistry and Radiometry, Al. gen. A. Chrusciela "Montera" 105, 00-910 Warsaw, Poland

Zinaida S. Khasbulatova

Chechen State Pedagogical Institue, 33 Kievskaya str., Groznyi 364037, Chechnya, Russia

Ivan Krupenya

Bashkir State University 32 Zaki Validi Street, 450076 Ufa, Republic of Bashkortostan, Russia

Elena Kulish

Bashkir State University 32 Zaki Validi Street, 450076 Ufa, Republic of Bashkortostan, Russia

E. M. Kuvardina

The South-West state university, 305040, Kursk, to St. 50-years of October, 94

N. V. Kuvardin

The South-West state university, 305040, Kursk, to St. 50-years of October, 94

xii List of Contributors

N. G. Lebedev

Volgograd State University, Volgograd, Russia

D. V. Medvedev

Elastomer Limited Liability Company, 400005, 75 Chuikova st., Volgograd, Russia

G. V. Medvedev

Volgograd State Technical University, 400005, 28 Lenin ave., Volgograd, Russia

I. A. Mikhaylov

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin str., 119334 Moscow, Russia

Vadim Z. Mingaleev

Institute of Organic Chemistry, Ufa Scientific Center of Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, Bashkortostan, 450054, Russia

P. Moldenaers

K. U. Leuven, Department of Chemical Engineering, W. de Croylaan 46, B-3001 Leuven, Belgium

T. M. Natriashvili

Laboratory for Polymer materials, Institute of Machine Mechanics, Mindeli Str.10, Tbilisi 0186, Republic Georgia,

F. F. Niyazy

The South-West state university, 305040, Kursk, to St. 50-years of October, 94, E-mail: farukhni-yazi@yandex.com

I. A. Novakov

Volgograd State Technical University, 400005, 28 Lenin ave., Volgograd, Russia

A. A. Popov

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin str., 119334 Moscow, Russia

P. Van Puyvelde

K. U. Leuven, Department of Chemical Engineering, W. de Croylaan 46, B-3001 Leuven, Belgium

Mariusz Siciński

Institute of Polymer and Dye Technology, Technical University of Łódź, Stefanowskiego 12/16, 90-924 Łódź, Poland

N. V. Sidorenko

Volgograd State Technical University, 400005, 28 Lenin ave., Volgograd, Russia

S. A. Sudorgin

Volgograd State Technical University, Volgograd, Russia

M. A. Vaniev

Volgograd State Technical University, 400005, 28 Lenin ave., Volgograd, Russia, E-mail: vaniev@vstu.ru

Michał Wiatrowski

Department of Molecular Physics, Technical University of Łódź, Stefanowskiego 12/16, 90-924 Łódź, Poland

Gennady E. Zaikov

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin str., 119334 Moscow, Russia, E-mail: Chembio@sky.chph.ras.ru

List of Contributors xiii

Elena M. Zakharova


Institute of Organic Chemistry, Ufa Scientific Center of Russian Academy of Sciences, pr. Oktyabrya 71, Ufa, Bashkortostan, 450054, Russia

Vadim P. Zakharova

Bashkir State University, Zaki Validi str. 32, Ufa, 450076 Bashkortostan, Russia

Iriva D. Zakirovaa

Bashkir State University, Zaki Validi str. 32, Ufa, 450076 Bashkortostan, Russia

LIST OF ABBREVIATIONS

AFM Atomic Force Microscopy

AP Aromatic Polyesters
CNT Carbon Nanotubes
CTZ Polysaccharide Chitosan
DCV- GCMD Dual-Volume GCMD

DM Dibenzothiazole Disulphide

DP Diamond Pore

DSC Differential Scanning Calorimetry

EB Electron Beam
ER Epoxy Resin
F Flexible
FG Fiber Glass

GCMD Grand Canonical Molecular Dynamics

HR Heat Radiation

HTS High Temperature Shearing

IUPAC International Union of Pure and Applied Chemis-

try

LDPE Low Density Polyethylene LQPS Liquid-Crystal Polyesters

MC Monte Carlo

MD Molecular Dynamics
MF Microfiltration

MSD Mean-Square Displacement
MWCO Molecular Weight Cut-Off
MWNT Multi-Walled Carbon Nanotube
NBR Acrylonitrile-Butadiene Rubber
NCN National Science Centre Poland

NF Nanofiltration
NR Natural Rubber

OIT Oxidation Induction Time
OOT Oxidation Onset Temperature

PEG Polyethylene Glycols

PFR Phenoloformaldehyde Resin PMS Polymethyl-Silsesquioxane

PP Polypropylene

PUE Polyurethane Elastomers

xvi List of Abbreviations

R Rigid

RESPA Reference System Propagator Algorithm

RHR Rate of Heat Release RO Reverse Osmosis

ROA Rheometrics Optical Analyzer
SALS Small Angle Light Scattering
SBR Styrene-Butadiene Rubber
SE Secondary Electron Signal
SEM Scanning Electron Microscope

SFE Surface Free Energy

SP Straight Path

SWNT Single-Walled Carbon Nanotube TPES Thermoplastic Elastomers

TS Tensile Strength
UF Ultrafiltration
US Ultrasound

VACF Velocity Autocorrelation Function

ZP Zigzag Path

LIST OF SYMBOLS

α_{\circ}	amplitude of the initial disturbance		
$\alpha_{\scriptscriptstyle B}$	amplitude of the instability		
$\frac{u_{\scriptscriptstyle B}}{u}$	average molecular speed		
(6.6)	coefficients of the Fourier expansion		
$A_{m's}$ P_{S}^{*}	constant		
$c_{j\sigma}^{+}$	creation operators of electrons		
	electron hopping integral		
t_{Δ}			
$\mathcal{E}_{l\sigma}$	energy of the electron by the impurity Fermi annihilation		
$c_{j\sigma}$			
$f_{i}(\mathbf{p},\mathbf{r})$	Fermi distribution function		
J_A	fugacity		
V_{ij}	matrix element of hybridization		
$egin{aligned} f_A \ V_{lj} \ \xi_i \ C_h^* \ D_A^* \end{aligned}$	random numbers generated for each trial		
C_h	saturation constant		
	self-diffusion coefficient		
Γ	surface tension		
$\eta_{\scriptscriptstyle m}$	viscosity of the matrix material		
A	proportionality constant		
a_1 and a_2	unit vectors		
aq	energy barrier		
B	hole affinity constant		
c(x)	concentration		
c _A	concentration of diffusant A		
D	pore diameter		
e_1 , e_2 and e_3	coordinates in the current configuration		
eV	electron energy		
F	applied external force		
G_1, G_2	material coordinates of a point in the initial configuration		
J	molecular flux		
K	temperature dependent Henry's law coefficient		
$K_{\rm n}$	Knudsen number		
$K_0^{"}$	proportionality constant		
K _P	henry's law constant		
L	membrane thickness		
M	molecular mass		

xviii List of Symbols

m_{sample} sample weight M_n molecular weight

N number of carbon atoms in the lattice

quantization numbernthe number of molecules

 N_{imp} number of adsorbed hydrogen atoms

P permeability

 $p_{\rm x}$ parallel component of the graphene sheet

Q heat of adsorption

R radius of the modeled SWCNT

 R_0 initial radius of the undisturbed fibril

r pore radius

S solubility coefficient

T thickness of the adsorbate film

T₀ constants depending on some quantum mechanical values

T_{melt} melting point of polyamide

U constant of the Coulomb repulsionV center-of-mass velocity component

V hybridization potential V'', V' volumes of polysaccharide

 V_L molecular volume of the condensate X position across the membrane

 Γ interfacial tension

 Δp pressure drop across the membrane

 $\begin{array}{ll} \Delta S & \text{entropy change} \\ \Delta H & \text{fusion heat} \\ \Theta & \text{time-lag} \end{array}$

mean free path of molecules

 $\rho(x)$ an arbitrary probability distribution function

 ρ'', ρ' density of polysaccharide

T pore tortuosity

 Ω known function of the viscosity ratio