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To the memory of Jacques-Louis Lions



Preface

This volume is the 14t and last one of the series “Nonlinear Partial
Differential Equations and their Applications. Collége de France Seminar”,
which published the texts of the lectures given at the seminars organized by
Jacques-Louis Lions, from his election at the Collége de France in 1973 until
his retirement in 1998. It was one of the foremost seminars in nonlinear
PDE’s and their applications during that period.

It is unfortunate that because of his untimely death, on May 17,
2001, Jacques-Louis Lions will not see its publication. This volume is
dedicated to his memory.
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Chapter 1

AN INTRODUCTION TO CRITICAL POINTS FOR
INTEGRAL FUNCTIONALS

D. Arcovya AND L. BoccaRrDO

1. Introduction

The study of minima of functionals defined in spaces of functions may be
considered one of the keystones of the mathematical analysis. Remind the
efforts by the great mathematicians of the last and present century to de-
velop sufficient conditions on the functional for the existence of minimum.
This theory is deeply related with the existence of solutions of boundary
value problems. Indeed, this connection is estabilished by the well-known
Euler-Lagrange equations associated to the functional.

However, there exist boundary value problems for which the associated
functional is indefinite, i.e. it is unbounded from below and from above.
This means that it has not global extrema and so we have to search the
solutions of the problem among the critical points, i.e. the points for which
the derivative of the functional vanishes.

From the abstract point of view there is a difference between the study
of minima and of critical points. Indeed, for the existence of minima we
need only assumptions on the functional. On the contrary, we point out
that the results of existence of critical points involve additional hypotheses
on the regularity of the functional to assure the existence of a derivative in
some sense. This may explain why the theory of mimima handles classes
of functionals with more general hypotheses of smoothness than the critical
point theory.

In some papers [4], [5], [6], we overcame this difference by developing a
critical point theory for nondifferentiable functionals. We observe explicitely
that our model functionals does not involve similar functions to the modulus.
In fact, the nondifferentiability of the considered functionals is due to the
introduction of some smooth Carathéodory function A(z,u) (as smooth as
you want). Specifically, we consider here functionals .J defined in W, %(£)
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(2 c RN open, N > 1) by
J(v) :/A(ac,v)le[zdx~/F(I,Uﬂdi, v e Wy?(Q), (1)
Q Q

with 0 < @ < A(z,2) < 8 < oo, |A%(z,2)| < v and f(z,2) = F'(z, z)
(derivative respect to z) a subcritical Carathéodory function. Observe that
J is only differentiable along directions of W(} ’Q(Q)ﬁLDo (€2), even for smooth
functions A (see [11]).

This note is devoted to present the critical point theory developed in [5]
(see also [?, 27,7, 7 2 7, ?]) for functionals which are not differentiable in
all directions.

2. A mountain pass theorem for nondifferentiable functionals
Our abstract setting for the functionals J that we study is given by the
following asumption:

(H) (X, |- lx) is a Banach space and ¥ C X is a subspace which is a
normed space endowed with a norm [l - lly. Moreover, J : X — R is a
functional on X such that it is continuous in (Y- llx + - |ly) and satisfies
the following hypotheses:

a) J has a directional derivative (J'(u),v) at each u € X through any
direction v € Y.

b) For fixed v € X, the function (J'(u),v) is linear in v € Y, and for
fixed v € Y, the function (J'(u),v) is continuous in u € X.

Due to the lack of regularity of the functional, some words are needed in
order to establish our definition of critical points.

Definition 2.1 — A function u € X is called a critical point of J if

(J'(u),v) =0, YoeY.

In this framework a suitable version of the Ambrosetti-Rabinowitz The-
orem has been proved in [5]. Specifically,

Theorem 2.2 — Assume (H) and that for e ¢ Y,

= inf J(y(t i =1 J(0),.J
c igrtgn[a)l(] (v(?)) > e1 = max {J(0), (e)}
with I" the set of the continuous paths v : [0,1] — (Y] - lx +1-lly),
such that v(0) = 0 and (1) = e. Suppose, in addition, that J satisfies the
condition
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(C) Any sequence {u,} in the Banach space Y satisfying for some {K,} C
IRt and {,} — O the conditions

{J(un)} is bounded, (2)
||un]|y <2K, VnelN, (3)
(T ) )] < [” vlly | ||u||x] wey, (4)

possesses a convergent subsequence in X.

Then there exists a nonzero critical point uw € Y of J such that J(u) = c.

Remarks 2.3.

1. The proof of this theorem is done by dividing it into two steps. In
the first one, only the geometric hypotheses are used to deduce the
existence of a sequence {u,} in Y satisfying for some {K,} ¢ R"
and {&,,} — 0 the conditions (2)—(4). The proof is then concluded by
using condition (C).

2. In this way, condition (C) can be considered as a compactness con-
dition on the functional .J, which substitutes in the nondifferentiable
case the role done by the well-known Palais-Smale condition in the
regular case Y = X.

3. This compactness condition is connected with the coercivity of J ex-
tending the previous results for C! functionals in [11]. To be specifical
in [7] we prove

Theorem 2.4 — In addition to (H), assume that Y is dense in X and that
J is continuous in X and bounded from below. If J satisfies condition (C')
then J Is coercive, i.e.,

J(u) = 0.

lefl x —o00

3. A simple model

The application of the abstract result quoted in the previous section to the
study of the functional J defined in (1) is very technical. In particular, the
verification of the condition (C'). For this reason, we present here a simple
but not natural functional which is not differentiable in W,'*(€), but for
which the verification of condition (C) has not technical difficulties like for
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functionals studied in [5], [6]. Specifically, we consider the functional .J
defined in WOIZ(Q) by setting

J(v) = %fﬂ |Vv|2dx + % Jq a(z,v)| V|9 dz — L Jowt)™ d,
(5)
v e Wy(Q),
where 1 <g <2 <m < 2* (2*=2N/(N -2),if 2 < N; 2*=00if N <2)
and a : @ x R — IR is a function which is measurable respect to z ¢ Q,
C' with respect to z # 0 and such that
(a1) There exist 3 > o > 0 such that
a<a(z,z) <G,

for almost every z € Q and z € R.

(a2) There exists v > 0 such that
la,(z,2)| <7, for almost every € {2, Vz > 0,

and a/(z,2) =0, z < 0.

(as) Either

a(z, z) is increasing and concave with respect to z > 0, (6)
or
a(z, z) is decreasing and convex with respect to z > 0. (7)
Let X = W;2(2), endowed with the usual norm || - ||; ¥ = Wy 2(Q) n
L2/2=9(Q), endowed with the norm || - |ly = || - ll2/(2=q)- By (a1) and (az)

the functional J is continuous on X and satisfies (H). We point out that
X:Yonlyforqgl—#%.

Theorem 3.1 [ 5] — Assume (a1 —a3) and 1 < ¢ < 2 < m < 2*. Then the
functional J defined in (5) satisfies (G).

Proof. Let {u,} be a sequence in ¥ satisfying (2), (3) and (4) for some
{K,} € R and let {en} — 0. We prove that {un} is bounded in X.
Indeed, taking v = wu,, as test function in (4), multiplying (2) by m and
adding, we obtain
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m 1
— -1 Vu,|?d ——/a’z T, Up ) Un|Vu,|? de
(5 -1) [ 19ulPde =2 [ &\ uu Vel

+ (—Zl - 1> / a(z,un)|Vu,|Tde < Cy~4e,(2+ ||un)-
Q

Hence, if a(z, z) satisfies (6), taking into account (a;), it follows for some
C5 > 0 that

(% - 1) a(z, 2) — %a'z(r, 2) = >la(x,z2) - dl(x, 2)z]

| =

+ (—WZ —1 = l) a(zx,z) > —Csy,
q q

and thus we deduce

(——1 /|Vun|2d7:<C’2/ |Vug|Tdz + C1 + £,(2 + |Jun|]),

which implies, since ¢ < 2, that the sequence {u,} is bounded in W}2(Q).
On the other hand, if instead of (6), it holds (7), then that the sequence

{u,} is bounded follows easily from the fact that a’(z,z)z < 0. Therefore

the sequence {u,} is bounded in X = W}'?(€). Then there exist u € X

and a subsequence (still denoted u,,) such that U, converges weakly to u.
Now let

if |z] <k

Ti(z) = ”
k—, if|z| > k.
||
and
Gi(z) =z —Ty(2), Vz€ R, Vk > 0.

To conclude the proof, it suffices to prove
Step 1. {Ty(un)}—Tr(u) in W 3(€2), as n — oo, for every k > R;.

Step 2. For every § > 0, there exist kg > R, and ny € IN such that
|Gr(un)|| < 6 for every k > ko and n > ng.

Indeed, Steps 1 and 2 imply that, given § > 0, there exist n; € IN and
k1 > R; such that
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S un = Ty ()| + 1T, (w) — )
S Tk (un) = Ty (W] + Gy (un)| + || T, (w) — |
< 34, Vn >ny,

llun —

Le. {u,} is strongly convergent in Wy2(Q) to u € Wy2(Q).
Step 1. Putting Wr ke = Tg(un) — Tk (u) as test function in (4), we deduce

/ Vu, - Vw, pdr + / a(z,un)|Vu,|?2Vu,, - Vw, i dx
Q Q
+ l/ a;(x,un)wn,k]Vun,"dx <e
qJa
with {e],} — co. Remark that

/a(ﬂr,un)IVun[q_2Vun'anykdx2/a(:c,un)IVTk(u)fq—QVTk(u)-an_kdr
Q Q

+/ a(z,un)|Vu,|*2Vuy,, - VT (u)dz
Jun|>k

and the right hand side converges to zero.
Moreover,

q/2
/ a;(l’,un)wn’kIVun[qda: < (/ [VUHIQVundr> ”Tk('U/n)*Tk(U)”q/(qﬁg)
Q Q

Thus, it follows that the sequence Ty (up) is convergent in WO1 ’Z(Q) to Ty (u)

for every k > 0.

Step 2. The assertion is easily proved by taking Gr(uy) as test function in

(4) and using (a3). ]
Thanks to the previous lemma, we can prove existence of a nontrivial

critical point for the functional .J. That is, the existence of a weak solution

of the quasilinear Dirichlet problem

—Au—div (a(@,u)|Vul*=?Vu) + Lol (2, u)|Vu|? = um2y
ue W), u>0inQ

Theorem 3.2 — Assume (a1 —a3) and 1 < q <2< m < 2* Then the
functional J given by (5) has at least a positive critical point.
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Proof. We point out that every nonzero critical point of J is positive. In
fact, it is deduced taking Ti(u~) as test function (note that w may not
belong to Y, but Tx(u~) € Y'). In order to show the existence of a nonzero
critical point, and following the ideas of Lemma 3.3 in [2], it is easy to check
that u = 0 is a strict local minimum of J, that is, there exist p, R such that

Ju)>p>0 for ||ul]| = R > 0. (8)

Moreover, limy|_,oo J(t¢1) = —00, being ¢; > 0 an eigenfunction associated
to the first eigenvalue A; of the homogeneous Dirichlet problem for the lapla-
cian operator with L?-norm equal to one. Thus, there exists t, > R such
that J(towp1) < 0. Thus, letting e = top; and considering the set I of the
(continuous) paths y : [0, 1] — (Wg2(@) N L¥C=D (), |||+ - a/a-g
which join 0 and e, i.e. such that v(0) = 0 and (1) = typ1, we observe
that every v € T is continuous from [0, 1] to Wol’z(Q), so that, by (8), for
every v € I there exists £ € [0, 1] such that

Iv®l = R.

Hence

= inf I i) > £ =),
o= L e (v(t)) = p > max{J(0), J(top1)} =0

Then, taking into account Lemma 3.1 and applying Theorem 2.2, we
deduce the existence of a critical point u € Wy %(2) N L2/@=a(Q)), of J
with J(u) = ¢ > 0 and thus u # 0. u

4. Main examples

The abstract theorem (with X = W;%(Q) and Y = Wy (Q) N L>(Q)) of
the Section 2 is applied now to obtain nonnegative critical points of the
functional J : Wy *(Q) — IR U {+00} defined by

J(v) :/QA(I7’U)|VU|2d.T - /{;F(rt;v‘*)d:r, v e Wy2(Q), (9)

i.e. nonnegative solutions of the boundary value problem:

u € Wy (Q) N L2 (),
(P)
—div( A(z,u) Vu) + 1 A (z,u)|Vu|? = F'(z,u) = f(x,u)
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where f: O xR — Ris a Carathéodory function with subecritical growth.
It is clear that for a solution u of (P) we are meaning

u € Wy(Q) N L=(Q)

Jo Az, v)VuVvdz + 1 [, AL(z, u)|Vul2vdz = Jo f(z, u)vdx

for every v € W *(Q) n L>(Q).
The hypotheses that we assume on the Carathéodory coefficient A :
2 x IR — IR are the following:
(A1) There exists o > 0 such that
a < Az, 2),
for almost every z € Q and z > 0.

(A2) There exists Ry > 0 such that Al (w,z) > 0 for almost every z € Q,
for every 2 > R;.

(A3) There exist m > 2 and o; > 0 such that

-2 1
<mT> Az, z) — §ZAIZ(I, z) > oy,

for almost every xz € Q, z > 0.

Notice that all assumptions on A(z, z) are for z > 0. In fact, since we
are looking for nonnegative solutions of (P) we can assume without loss of
generality that A(z, z) is even on z.

On the other hand, we will assume the following conditions on f (o, 2):

(f1) There exist C;,C5 > 0 such that
[f(z,2)| < C1]2|° + C,, ae. ze Q, VzeR",
with o +1 < 2%, (2* =2N/(N —2) if 2 < N, and 2* = 0o if 2 > N).
(f2) There exists Ry > 0 such that
0 <mF(z,2) < zf(z,2),
for almost = € © and every z > R, (m is the same as in (A3)).

(f3) f(z,|z|) = o(|z]) at z = 0, uniformly in z € Q.
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Theorem 4.1 — Assume (A;1_3), (fi_3) and that

lim Alz,2) (:’ 2)

z——400

=0, unif. inx € Q. (10)

Then the problem (P) has, at least, one nonnegative and nontrivial solu-
tion.

Remarks 4.2.

1. The above theorem is essentially contained in [5]. However, in that
paper it is assumed in addition that A(z,z) is bounded from above
and its derivative A’ (z,z) with respect to z is also bounded. In [7],
we have seen that these additional hypotheses are not necessary for
the existence.

2. The general case of functionals

/ J(x,v, Vv)dz ~ / F(z,v")dz, ve WS P(Q), (p>1)

Q Q

could be also handled as in [5]. For simplicity reasons, we just present
here the case p = 2, J(z,v, Vv) = A(z,v)|Vv|2

3. Some remarks about the meaning of (A43) and (f;) may be found in
[5, Lemma 3.2 and Remarks 3.1]. ]

Proof of Theorem 4.1. For every n € IN, let h,, be a nondecreasing C'!
function in [0, co) satisfying

hn(s) =s, Vs € [0,n — 1],

hn(s) < S, Vs € (’Il - 17”)7
hn(s) =n, Vs > n.

Consider the coefficients A,(z, z) = h,(A(z, 2)), z € Q, z € IR. Clearly, A4,

satisfies (A;_3) and, in addition, it is bounded from above with bounded
derivative A (x,z) (with respect to z). In this way, if we define the func-

tionals J,, : WOI‘Q(Q) — IR by setting
Jn(v) = / Ap(2,0)|Vo? de — L/ F(z,v") dz, v e W3(Q),
Q s+1Jq

then using (f1_2) and (Aj3), it can be seen in a similar way to the one in
Section 2 that J,, satisfies (C). Indeed, we have
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Lemma 4.3 — (Compactness condition) Assume (A1-3) and (f1_2). Then
the functional J,, satisfies (C).

Using in addition (f3) and following the ideas of [2], it is easily seen that
Jy, satisfies the geometrical hypotheses of Theorem 2.9. Consequently, by
it, there exists a nontrivial and nonnegative solution Uy, of the problem

un € Wy2(Q) N L (Q),
(11)
—div( An(z,un) Vup) + LA (2, u,)|Vu, |2 = f(z,ut

'/t

with critical level

']n n) =Cp =1 f ']n t)),
(un) =c L e (v(2)),

where I' = {v : [0,1] — Wy2(Q) N L®(Q) /4(0) = 0,%(1) = e,}, e, €
WOI‘Q(Q) N L*>(§) is such that J,(e,) < 0. Taking into account that
An(z,2) < A(z, z) and (10), we observe that

A(‘Tv t(lgl)

1, 1 .
Jn(t(pl) < J(t(pl) = §t gal ,:EQ T|VS01IQCZI — m /S; (P1+1 d’L‘:l <0,

for all t € [tg,00) if tg > 0 is large enough. This allows us to choose
en = toyy (independent of n € IN). On the other hand, by the Mountain
Pass geometry of J; there exist 6,7 > 0 such that
Jn(v) = Ji(v) > 6, V||| <,

(i-e., roughly speaking, v = 0 is a strict local minimum of .J,,, uniformly in
n € IN). This implies that

Jn(“‘n) =cp > 0. (12)
We claim that {u,} is bounded in Wy2(€). Indeed, using again that
An(z,z) < A(z, z), we deduce

‘]'L n = i n
n(Un) wlrelfngl[g?;]J (v(2))

IN

inf max J(~(t
oo (v(2))

< max J(ttop1) = C;.
te0,1]

1
Subtracting —(J/, (u,), u,) = 0 we derive
m



