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Preface

This book is designed to be an introduction to harmonic analysis in
Euclidean spaces. The subject has seen a considerable flowering during the
past twenty years. We have not tried to cover all phases of this develop-
ment. Rather, our chief concern was to illustrate various methods used in
this aspect of Fourier analysis that exploit the structure of Euclidean
spaces. In particular, we try to show the role played by the action of
translations, dilations, and rotations. Another concern, not independent
of this chief one, is to motivate the study of harmonic analysis on more
general spaces having an analogous structure (such as arises in symmetric
spaces). It is our feeling that the study of Fourier analysis in that context
and, also, in other general settings, is more meaningful once the special
Euclidean case is understood.

Because of these concerns we have not included several topics that are
usually presented in more general treatments of harmonic analysis. For
example, results centering around the Wiener Tauberian theorem, which
hold in the case of general locally compact Abelian groups, do not involve
the special features of Euclidean spaces. Stated very briefly, our selection
of topics was motivated by showing how real variable and complex
variable methods extend from the one-dimensional to the many-
dimensional case.

We require that the readers have mastered the material that is usually
covered in a course in the theory of integration and in the theory of
functions of a complex variable. We also believe that this book is much
more meaningful to someone who has some previous acquaintance with
harmonic analysis. If the reader has no such previous experience, he might
find it profitable first to look at the expository article “Harmonic Analysis”
(see Guido Weiss [3]).

The idea of writing this book first occurred to us when we presented
some of these topics in graduate courses given during the academic year
1958-59. Since that time each of us has lectured on this subject at various
times and places. We are thankful to our colleagues and students who
helped us clarify our ideas and organize this material.

More specifically, one of us (Weiss) taught a course on this subject at
Washington University jointly with Mitchell Taibleson during the academic

vii
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year 1963-64, We are grateful for his contribution to the organization
of this course and his continued interest in our effort. The other author
gave courses at the University of Chicago (1961-62) and Princeton
(1963-65) that dealt with the topics of this book. Our task of writing the
book was considerably facilitated by having the lecture notes, which were
prepared by R. Askey, N. J. Weiss, and D. Levine. It is a pleasure to
express our appreciation to them. Ronald R. Coifman was a constant
help throughout the writing of this book. His many suggestions are
incorporated in much of the presentation. Miguel de Guzmdn, J. R.
Hattemer, Stephen Wainger, and N. J. Weiss read the entire manuscript.
We are grateful for their corrections and comments. We are also indebted
to I. I. Hirschman Jr., who read part of the manuscript and made several
useful suggestions, and to Mrs. A. Bonami, J. L. Clerc, L. J. Dickson,
S. S. Gelbart, and S. Zucker who helped us correct the proof sheets.

Princeton, N.J.
St. Louis, Mo.
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CHAPTER I

The Fourier Transform

In this chapter we introduce the Fourier transform and study its more
elementary properties. Since most of the material of this chapter is rather
standard our treatment here will be brief. We begin by considering the be-
havior of the Fourier transform on the spaces L'(E,) and L3(E,), This will be
done in the first two sections, The Fourier transform’s formal aspects are
more easily described in the context of distributions; therefore, in the third
section we extend its definition to the space of tempered distributions. The
reader will note that in this chapter we are mainly exploiting the translation
structure of Euclidean spaces. In the following chapters (and specifically in
Chapter IV), however, the action of rotations on these spaces plays an im-
portant role.

1. The Basic L' Theory of the Fourier Transform

We begin by introducing some notation that will be used throughout
this work. E, denotes n-dimensional (real) Euclidean space. We consist-
ently write x = (x;, Xp,..., Xo), ¥ = (J1, Y2, . - -, V), . . . fOr the elements
of E,. The inner product of x, y € E, is the number x-y = 7., x;y;; the
norm of x € E, is the (nonnegative) number |x| = Vv x-x; furthermore,
dx = dx, dx, - - - dx, denotes the element of ordinary Lebesgue measure.

We will deal with various spaces of functions defined on E,. The sim-
plest of these are the L? = L?(E,) spaces, | £ p < o, of all measurable
functions f such that | f], = (fEnlf(x)[" dx)'"? < co. The number |f|, is
called the L? norm of f. The space L*(E,) consists of all essentially bounded
functions on E, and, for fe L*(E,), we let | | » be the essential supremum
of |f(x)|, x € E,.* Often, the space C, of all continuous functions vanish-
ing at infinity, with the L® norm just described, arises more naturally than
L* = L*(E,). Unless otherwise specified, all functions are assumed to be

1 We say [ is equivalent to g if f(x) = g(x) for almost every x € E,, whenever [
gel?(E,), | £ p = . If we consider the equivalence classes obtained from this
relation and define the norm of a class to be the norm of any one of its representatives
(clearly |f|, = | gl, if fis equivalent to g) we obtain a Banach space. We shall
denote this space by L?(E,) as well. It will be obvious from the context which of
these spaces LP(E,) is under discussion.



2 I: THE FOURIER TRANSFORM

complex valued; it will be assumed, throughout the book, that all functions
are (Borel) measurable.
If f e L\(E,) the Fourier transform of fis the function f defined by letting

fx) = f f(t)e=mxt de

for all x € E,. 1t is easy to establish the following results:

THEOREM 1.1. (a) The mapping f — f is a bounded linear transformation
from L*(E,) into L=(E,). In fact | f{lo < ||f1;
(b) Iffe LX(E,) then fis uniformly continuous.

THEOREM 1.2 (Riemann-Lebesgue). If feLYE,) then f(x) >0 as
|x] — c0; thus, in view of the last result, we can conclude thai f belongs to the
class C,.

Theorem 1.1 is obvious; moreover, so is Theorem 1.2 when f is the
characteristic function of the n-dimensional interval I = {xe E,; 4, <
x; £by,...,a, 2x,=5 b} (for we can calculate £ explicitly as an iterated
integral). The same is therefore true for a finite linear combination of such
characteristic functions. The result for a general fe L}(E,) follows easily
by approximating f in the L* norm by such a linear combination g; for
then f = g + (f ~ g), where f — £ is uniformly small (by Theorem 1.1,
part (a)) while g(x) — 0 as |x| — .

Theorem 1.2 gives a necessary condition for a function to be a Fourier
transform. Belonging to the class C,, however, is far from being sufficient
(see 4.1). There seems to be no simple satisfactory condition characterizing
Fourier transforms of functions in L*(E,).

The above definition of the Fourier transform extends immediately to
finite Borel measures: if u is such a measure on E, we define 4 by letting

A(x) = f =215t ().

Eqn

Theorem 1.1 is valid for these Fourier transforms if we replace the L'-
norm by the total variation of u.

In addition to the vector-space operations, L'(E,) is endowed with a
“multiplication” making this space a Banach algebra. This operation,
called convolution, is defined in the following way: If f and g belong to
LY(E,) their convolution & = fx g is the function whose value at x € E,, is

W) = [ 16 = D) -
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One can show by an elementary argument that f(x — y)g(y) is a measur-
able function of the two variables x and y. It then follows immediately
from Fubini’s theorem on the interchange of the order of integration that
heLXE,) and |A|; < |fl.lgl.. Furthermore, this operation is com-
mutative and associative. More generally, & = f* g is defined whenever
feL¥E,), ! £p <o, and geL'(E,). In fact we have the following
result:

THEOREM 1.3. IffelP(E,), 1 S p S 0, and g LME,) thenh = f* g
is well defined and belongs to L*(E,). Moreover,

Ial, = 1f150 8l
It is clear that |A(x)| £ fs,. |fx — )| |g(»)| dy. Thus the desired result is
an easy consequence of Minkowski’s integral inequality:

[[moras) "= [{frsee = o) Il

" 1/l gl

As was the case for the Fourier transform, we can extend this operation
to include finite Borel measures: if w is such a measure on E, we define
h = f* du by letting

IA

i

W) = [ £ = ) duC),

for x € E, and fe L?. Theorem 1.3 is valid for these convolutions if we
replace the L*-norm of g by the total variation of .

An essential feature of harmonic analysis is the fact that the Fourier
transform of the convolution of two functions is the (pointwise) product
of their Fourier transforms. More precisely, the following result is an easy
consequence of the definitions:

TueoreM 1.4.  Iffand g belong 1o L\(E,) then
(frg) =/fg.*
Many other important operations of analysis have particularly simple
relations with the Fourier-transform. For example, if we let 7, denote

transiation by h € E, (by this we mean the operator mapping the function
g(x) into the function g(x — #)) we have

() (f)(x) = e"2*f(x),
(1.5) ..

i) (@) (x) = (),
whenever fe LY{E,).

2 We shall use this notation consistently: (. ..)" denotes the Fourier transform of

(...
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If a > 0 we let 8, denote dilation by a; that is, §, is the operator mapping
the function g(x) into the function g(ax). Whenever f € L*(E,) we then have

(1.6) a"(3.f)"(x) = fla=x).
Differentiation and Fourier transformation are related in the following
way:

THEOREM 1.7.  Suppose f< LY (E,) and x, f(x) € L\(E,), where x, is the
k-th coordinate function. Then f is differentiable with respect to x,, and

a% (x) = (=2mity F(O)" ().

Proor. Letting h = (0,..., Ay, ..., 0) be a nonzero vector along the
k-th coordinate axis, we have, by part (ii) of (1.5) and the Lebesgue
dominated convergence theorem,

J_’(_x_+_’;1):_f(_x) _ {(L_Ii:_‘) f(t)}A(X) s (= 2mity fO) )

as f, — 0.

Theorem 1.7 asserts that applying the Fourier transform after multi-
plying by the k-th coordinate function is equivalent (up to a multiplicative
constant) to taking the partial derivative with respect to the k-th variable
of the Fourier transform. It is also true that the Fourier transforms of
such partial derivatives are obtainable (again, up to a multiplicative
constant) by multiplying the Fourler transform by the corresponding co-
ordinate functions. We shall encounter many versions of this result. In
order to make a precise statement of one of these versions (perhaps the
simplest to prove) we introduce the following concept: We say that f is
differentiable in the LF norm with respect to x, whenever fe LP(E,;) and
there exists a g in LP(E,) such that

( f f&x+h) = fx)
E hk

n

~ g(x)

» Ir
dx) — 0,

as iy, — O (we are using the notation established in the proof of Theorem
1.7). The function g is called the partial derivative of f (with respect to xy)
in the L? norm.

Applying part (i) of (1.5) and part (a) of Theorem 1.1 to

18(x) — SO — k),

and then letting &, — 0 we obtain:

THEOREM 1.8. If fe LNE,) and g is the partial derivative of f with
respect 1o x, in the L' norm then

&(x) = 2mix, f(x).
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Both Theorems 1.7 and 1.8 can be extended to higher derivatives.
Without going into details, we note the following formulas:

49 (i) PD)f(x) = (P(=27it)f(1))"(%),
‘ (i) (PD))(x) = PQuix)f(x),

where, for an n-tuple o = («y, ..., a,) of nonnegative integers we let
X* = xPr x5 X%, D% = 9%teet ot gxts 9x% ... O0x%, P is a poly-
nomial in the » variables x, x,, .. ., x,, and P(D) is the associated differ-
ential operator (i.e., we replace x® by D% in P(x)).

We now turn to the problem of inverting the Fourier transform. That is,
we shall consider the question: Given the Fourier transform f of an integ-
rable function f, how do we obtain f back again from f? The reader familiar
with the elementary theory of Fourier series and integrals would expect
Sf(¢) to be equal to the integral

(1.10) f Fx)ermt= dx,

Unfortunately, f need not be integrable (for example, let n = 1 and f be
the characteristic function of a finite interval). In order to get around this
difficulty we shall use certain summability methods for integrals. We first
introduce the 4be/ method of summability, whose analog for series is very
well-known. For each ¢ > 0 we define the Abel mean A, = A,(f) to be the
integral

A(f) = 4, = f S(e d.

It is clear that if fe LY(E,) then lim A(f) = "'E f(x) dx. On the other
&0 n

hand, these Abel means are well-defined even when fis not integrable (if
we only assume, for example, that f is bounded, then 4,(f) is defined for
all £ > 0). Moreover, their limit

(1.11) lim A(f) = lim ff(x)ﬂm dx
-0 &—0
Ep

may exist even when fis not integrable. A classical example of such a case
is obtained by letting f(x) = sinx/x whenn = 1.2

Whenever the limit in (1.11) exists and is finite we say that fE"fis Abel
summable to this limit.

A somewhat similar method of summability is Gauss summability. This
method js defined by the Gauss (sometimes called Gauss—Weierstrass)

8 As is well known, in this case lim ff,’f(x) dx exists. It is an easy exercise to show
f 2ad o0

that whenever f is locally integrable and such a limit, /, exists the Abel means
A = |3 e **f(x) dx converge to /.



