SPFORMAL TECHNIQUES
IN REAL-TIME AND
- FAULT-TOLERANT
o SYSTEMS

Edited by
Jan Vytopil

KLUWER ACADEMIC PUBLISHERS

FORMAL TECHNIQUES IN REAL-TIME
AND FAULT-TOLERANT SYSTEMS

edited
by

Jan Vytopil

BSO/Origin
University of Nijmegen

;“
KLUWER ACADEMIC PUBLISHERS
Boston * Dordrecht * London

Distributors for North America:
Kluwer Academic Publishers

101 Philip Drive

Assinippi Park

Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre

Post Office Box 322

3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Formal techniques in real-time and fault-tolerant systems / edited by

Jan Vytopil.

p- cm. -- (Kluwer international series in engineering and
computer science ; 221. Real-time systems)

Includes bibliographical references and index.

ISBN 0-7923-9332-5

1. Real-time data processing. 2. Fault-tolerant computing.
I. Vytopil, J. (Jan), 1947- . II. Series: Kluwer international
series in engineering and computer science ; SECS 221. III. Series:
Kluwer international series in engineering and computer science.
Real-time systems.
QA76.54.F65 1993
004°.33--dc20 93-16676

CIP

Copyright © 1993 by Kluwer Academic Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Kluwer Academic
Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061.

Printed on acid-free paper.

Printed in the United States of America

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

REAL-TIME SYSTEMS

Consulting Editor

John A. Stankovic

REAL-TIME UNIX SYSTEMS: Design and Application Guide,
B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, M. McRoberts,
ISBN: 0-7923-9099-7

FOUNDATIONS OF REAL-TIME COMPUTING: Scheduling and Resource
Management, A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9166-7

FOUNDATIONS OF REAL-TIME COMPUTING: Formal Specificationsand
Methods, A. M. van Tilborg, G. M. Koob; ISBN: 0-7923-9167-5

CONSTRUCTING PREDICTABLE REAL TIME SYSTEMS,
W. A. Halang, A. D. Stoyenko; ISBN: 0-7923-9202-7

SYNCHRONIZATION IN REAL-TIME SYSTEMS: A Priority Inheritance
Approach, R. Rajkumar; ISBN: 0-7923-9211-6

REAL-TIME SYSTEMS ENGINEERING AND APPLICATIONS,
M. Schiebe, S. Pferrer; ISBN: 0-7923-9196-9

SYNCHRONOUS PROGRAMMING OF REACTIVE SYSTEMS,
N. Halbwachs; ISBN: 0-7923-9311-2

FORMAL TECHNIQUES IN REAL-TIME
AND FAULT-TOLERANT SYSTEMS

Jos Coenen

Department of Mathematics

and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

E-mail: wsinjosc@win.tue.nl

Hans A. Hansson

Swedish Institute of Computer Science
Box 1263, S-164 28 Kista

and

Department of Computer Science
Uppsala University

Sweden

E-mail: hansh@sics.se

Jozef Hooman

Department of Mathematics

and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

E-mail: wsinjh@win.tue.nl

Mathai Joseph

Department of Computer Science
University of Warwick

Coventry CV4 TAL, Warwick
United Kingdom

E-mail: mathai@dcs.warwick.ac.uk

Zhiming Liu

Department of Computer Science

CONTRIBUTORS

University of Warwick
Coventry CV4 TAL, Warwick
United Kingdom

E-mail: liu@dcs.warwick.ac.uk

Jan Peleska

Deutsche System—Technik GmbH
Edisonstrafie 3, D-2300 Kiel 14
Federal Republic of Germany

E-mail: jap@informatik.uni-kiel.dbp.de

John Rushby

Computer Science Laboratory
SRI International

Menlo Park CA 94025

United States of America
E-mail: rushby@csl.sri.com

Henk Schepers

Department of Mathematics

and Computing Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven
The Netherlands

E-mail: schepers@win.tue.nl

Doug G. Weber

118 West Enfield Center Road
Ithaca, NY 14850

United States of America
E-mail: weber@keysoft.com

PREFACE

Practically every day, the media report that malfunctioning of a computer
system resulted in incidents. This does not necessarily mean that the software
and hardware making up such a system has not been designed with as much care
as is commercially feasible. However, as the burden of controlling complicated
systems is shifted onto computers, so does the complexity of computer software
and hardware increase.

The sobering description of failures of some systems has led to the belief that
there is a need for a distinct engineering discipline with its own theoretical
foundations, objective design standards and supporting tools in order to develop
reliable systems.

The term ‘reliability (of a system or its components)’ in computer science is
often defined as the “probability that a certain system component functions
correctly over a certain period of time”. This requires that reliability is mod-
elled in a time-dependant, quantitative probabilistic formal framework. How-
ever, reasoning about correctness of a system — i.e. an ability to deliver an a
priori defined function, which is a qualitative issue — can be separated from
quantitative probabilistic notions of reliability. A reliability of a system (or a
subsystem) in qualitative sense can be expressed in terms of properties that
qualitatively characterize the behaviour of a system that is error-prone.

The term ‘fault-tolerance’ describes that a system has properties which enable
it to deliver its specified function despite of (certain) faults of its subsystem.
Fault-tolerance is achieved by adding extra hardware and/or software which
corrects the effects of faults. In this sense, a system can be called fault-tolerant
if it can be proved the resulting (extended) system under some model of relia-
bility meets the reliability requirements.

The chapters in this volume deal mostly with reliability from a qualitative point
of view. It contains a selection of papers that focus on the state-of-the-art in
" formal specification, development and verification of fault-tolerant computing
systems. Preliminary versions of some papers were presented at the School and

Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
held at University of Nijmegen in January 1992. Other chapters are written
versions of lectures and tutorials presented at the same event.

The main theme of this volume can be formulated as follows: How does a
specification, development and verification of conventional and fault- tolerant
systems differ? How do the notations, methodology and tools used in design
and development of fault-tolerant and conventional systems differ?

The purpose of this book is to explore these important issues, the definite
answers, if they exist at all, are in my opinion still some years in the future.

The book is divided in two parts: Concepts and Foundations and Appli-
cations. Each part contains a number of contributions written by different
researchers. Each chapter is self-contained and may be profitably studied with-
out prior detailed familiarity with previous chapters. However, it is advisable
to examine each chapter carefully because only then do many of the important
and subtle differences in approach become evident.

The First Part: Concepts and Foundations sets the stage for what follows
by defining the basic notions and practices of the field of design and specifica-
tion of fault-tolerant systems. The chapter by Henk Schepers: “Terminology
and Paradigms for Fault Tolerance” analyses the interaction between fault-
hypothesis and design decisions.

A definition of the notion “fault-tolerance” that does not refer, as usually, to
the functional correctness properties is given in chapter “Fault-Tolerance as
Self-Similarity” by Doug Weber.

The chapter “Parameterized Semantics for Fault Tolerant Real-Time Systems”
by Jos Coenen and Jozef Hooman presents a denotational semantics to describe
real-time behaviour of distributed programs. In this semantics, the occurrences

of hardware faults and their effects on real-time behaviour of programs can be
modelled.

The effects of these faults upon the behaviour of the programs can be described
as well. Hans A. Hansson in his chapter “Modeling Real-time and Reliability”
provides a framework for specification and verification of distributed systems
in which the reliability, timeliness and functionality can be modelled.

The Second Part: Applications is the “how-to” Part. It contains examples of
the use of formal methods in specification and development of fault-tolerant sys-

Preface xi

tems. The chapter by John Rushby: “A Fault-Masking and Transient-Recovery
Model for Digital Flight-Control Systems” presents a formal model and analysis
for fault-masking and transient-recovery among replicated computers of digital
flight-control system. This model has been specified in the language of EHDM
and the crucial theorem and its corollary have been mechanically checked.

Zhiming Liu and Mathai Joseph in their chapter “Specification and Verification
of Recovery in Asynchronous Communicating Systems” presents a method for
specification and verification of general checkpointing programs. It combines
the considerations of checkpointing, interference by physical faults and subse-
quent recovery so that the properties of fault-tolerant programs can be proved.

The chapter by Jan Peleska, “CSP, Formal Software Engineering and the De-
velopment of Fault-tolerant Systems”, describes the use of formal techniques
in development of flight control system in real industrial environment. In this
article the Structured Method of Ward and Mellor is combined with formal
specification language CSP of C.A.R. Hoare. The transformation schemata of
Ward and Mellor are interpreted by means of translation rules so that a struc-
tured specification can be transformed into a CSP program. The use of the
method is illustrated by showing that a dual computer system is tolerant to
certain types of failures.

This book is suitable for graduate or advanced undergraduate course use when
supplemented by additional readings that place the material contained herein
in fuller context. Most of the techniques and notations described in this book
are not yet ready for widespread use in commercial settings although some have
been used in realistic setting.

FORMAL TECHNIQUES IN REAL-TIME
AND FAULT-TOLERANT SYSTEMS

CONTENTS

CONTRIBUTORS vii
PREFACE ix
I CONCEPTS AND FOUNDATIONS 1

1 Henk Schepers
Terminology and Paradigms for Fault Tolerance 3

2 Doug G. Weber
Fault Tolerance as Self-Similarity 33

3 Jos Coenen and Jozef Hooman
Parameterized Semantics for Fault Tolerant Real-Time Systems 51

4 Hans A. Hansson
Modeling Real-Time and Reliability 79

II APPLICATIONS 107

5 John Rushby
A Fault-Masking and Transient-Recovery Model
for Digital Flight-Control Systems 109

6 Zhiming Liu and Mathai Joseph
Specification and Verification of Recovery in
Asynchronous Communicating Systems 137

7 Jan Peleska
CSP, Formal Software Engineering and the Development of
Fault-Tolerant Systems 167

INDEX 207

Part 1

Concepts and Foundations

TERMINOLOGY AND PARADIGMS
FOR FAULT TOLERANCE

Henk Schepers!

ABSTRACT

To familiarize the reader with the field of fault tolerance, this report discusses the
most important terms and paradigms used in that field. After establishing a basic
terminology, the fundamental techniques to achieve fault tolerance, i.e. the basic ways
to employ redundancy, are identified. In particular, the role that fault hypotheses play
in the design of a fault tolerant system is illustrated.

To enable the development of formal methods for fault tolerance, the interaction be-
tween fault hypotheses and design decisions is analyzed in detail for two fault tolerant

systems. The first is a stable virtual disk which is implemented using a number of
unreliable physical disks. The second concerns a reliable broadcast protocol.

Keywords Fault tolerance, fault hypothesis, redundancy.

1.1 OF FAULTS AND FAILURES

According to Laprie (cf. [13]) fault tolerance is the property of a system “to

lSupported by the Dutch NWO under grant number NWI88.1517: ‘Fault Tolerance:
Paradigms, Models, Logics, Construction’.

provide, by redundancy, service complying with the specification in spite of
faults having occurred or occurring”. This report introduces the paradigms
and associated terminology commonly used in the field of fault tolerance.

A system consists of components which interact as described by a design. There
is no conceptual difference between the notions ‘system’ and ‘component’: the
system is simply the component under discussion. The major difference be-
tween ‘system’ and ‘environment’ is that you can control the system but not
the environment.

The service delivered by a component is the visible abstraction of the compo-
nent’s behaviour at the point of interaction — the interface. The behaviour
of a system can easily be separated into two distinct categories: behaviour in
accordance with the specification, and behaviour not in accordance with the
specification. We refer to these kinds of behaviour as normal and abnormal,
respectively. A failure occurs when the behaviour of a system deviates from
that required by its specification [19]. The failure of a component appears to
the system as a fault. Notice that there is no basic difference between ‘fault’
and ‘failure’: they are merely used to distinguish the cause from the conse-
quence. In this report we do not consider system failures that are caused by
design faults.

Faults are usually classified according to the specific aspects of the specification
they violate. Timing faults, for instance, can be divided into late behaviour,
which can lead to omission, and early behaviour, which can lead to overrun.
Another example is the occurrence of a range fault the moment a value does
not conform to the specified range.

If it is possible to deduce from assertions about a component’s behaviour that
some fault has occurred, we call that fault detectable. Different fault models
arise from the assumptions about the correctness of the behaviour with respect
to the various specification aspects, and, in case that behaviour is not assumed
to be correct, the detectability of such faults.

When discussing hardware defects, the notions ‘transient’ and ‘permanent’ are
well established [1]. A transient defect is present for only a limited period of
time (no longer than some threshold) after which it spontaneously disappears.
Any defect which is present for longer than that threshold period is said to be
permanent. Analogous to this, a system failure transient or permanent.

The remainder of this report is organized as follows: in Section 2 the various
stages of the procedure of tolerating faults are mentioned and it is discussed

CHAPTER 1 5

what designing for fault tolerance is about. In particular, the new element
introduced by the specification of fault tolerant systems, i.e. specification rel-
ative to the system’s fault hypotheses, is illustrated. In Section 3 a number
of typical paradigms for fault tolerance are discussed. Section 4 presents, as a
case study, the design of a stable storage. Finally, Section 5 discusses, also as
a case study, the design of a reliable broadcast protocol.

1.2 TOLERATING FAULTS

As mentioned before, fault tolerance is concerned with providing the specified
service in the presence of faults. To do so, fault tolerance depends upon the
effective deployment and utilization of redundancy?.

Of course, a fault tolerant system can tolerate only a limited number of cer-
tain types of faults. In fault tolerant systems, three domains of component
behaviour are usually distinguished: normal, exceptional and catastrophic (see
for instance [14]). Normal behaviour is the behaviour when no faults occur.
The discriminating factor between exceptional and catastrophic behaviour is
the component’s fault hypothesis which stipulates how faults affect the compo-
nent’s normal behaviour. An example is the hypothesis that a communication
medium may lose but not corrupt messages. Relative to the fault hypothesis an
exceptional behaviour exhibits an abnormality which should be tolerated (to an
extent that remains to be specified), and a catastrophic behaviour has an ab-
normality that was not anticipated. Thus, for this communication medium the
corruption of messages is catastrophic. In general, the catastrophic behaviour
of a component cannot be tolerated by a system. Under certain fault hypothe-
ses, the system is designed as if the hypothetical faults are the only faults it can
experience and measures are taken to tolerate (only) those anticipated faults.

The most rigorous way to tolerate a fault is to use so much redundancy that
it can be masked: for example the triple modular redundancy paradigm as
presented in Section 3.3. But this kind of redundancy is generally too expensive.

If faults cannot be masked, then our first concern is how to identify an antici-
pated fault (fault detection). Before the system can be allowed to continue to
provide its service, fault diagnosis must be applied and the fault’s — unwanted
— consequences must be undone. The fault diagnosis must identify the compo-
nents that are responsible for the fault and also whether that fault is transient

2Sometimes redundancy is classified by the kind of element that is redundant (e.g. com-
ponent redundancy and information redundancy). Such a classification, however, is not
orthogonal (for instance component redundancy implies information redundancy).

or permanent.

If the fault is only transient, its consequences can be undone by simply restart-
ing the system?, i.e. by putting it in some initial state, or, in case a valid system
state is regularly recorded as a checkpoint, by bringing the system back to its
last checkpoint and then continuing operation from that state. This technique
is called backward error recovery, and it allows actions to be atomic [15]: they
are either executed completely or not at all. Manipulating the current erro-
neous state to produce an error free new state is called forward error recovery.
Once taken to a consistent state the system can continue to provide its service.

If the fault is not transient but permanent the system needs repair first. If the
faulty component can be replaced, the system can deliver its service without
modification; otherwise, other components must take over the faulty compo-
nent’s tasks in addition to their own, and this may lead to a degradation of the
service in case not all the tasks can be fulfilled. Graceful degradation allows as
many tasks as possible to be still accomplished. Replacing a faulty component
can be done either physically or logically by means of reconfiguration, where
a faulty component is taken out of action and a spare, already present in the
system, is put into service.

1.3 PARADIGMS FOR FAULT
TOLERANCE

To familiarize the reader with the fault tolerance field a few typical paradigms
are presented, and analyzed.

1.3.1 Consistency check

Consistency check paradigms apply to those cases where the output of a com-
ponent is checked with respect to its specified functionality. Such paradigms
are used especially when a component performs a mathematical function, for
instance by verifying whether the result conforms to the specified format (syn-
taz checking), by verifying whether the result lies in the specified range (range
checking) or by verifying whether the application of the reverse function to the
result yields the input again (reversal checking).

3This only helps, of course, if the application allows the involved delay; for time-critical
applications this usually is not the case.

