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CHAPTER ONE

Charged Particles can Mediate
Attraction Between Equally
Charged Membranes—
Theoretical Study

. -1
Séarka Perutkova
Laboratory of Biophysics, Faculty of Electrical Engincering, University of Ljubljana, Ljubljana, Slovenia
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Abstract

Electrostatic interactions are one of the leading interactions in all biological systems. In
this chapter, we present a possible mechanism which can lead to attractive interaction
between two like-charged biological surfaces. We show three different modeled sys-
tems of charged biological surfaces in the solution containing charged macro-ionic par-
ticles which were inspired by experimental observations. In our proposed mechanism,
we take into consideration the orientational entropy of the system. Namely, when the
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macro-ionic particles in solution have distinctive internal distribution of charge, the
additional degrees of freedom for rotation are involved in the entropic contribution
to the total free energy. The contribution is negative and thus lowers the free energy.
Under certain conditions, this can lead to attractive force between like-charged surfaces.
In the study, we use analytical as well as numerical methods—maodifications of Poisson-
Boltzmann equation and Monte Carlo simulations. We studied rod-like and spherical
geometry of particles which can mediate the attraction. The macro-ionic particles
can represent different kinds of proteins or various metallic nanoparticles in aqueous
surrounding.

>> 1. BIOLOGICAL SYSTEMS IN ELECTROLYTE SOLUTIONS

Cells, macromolecules, and all other components in biological systems
are embedded in aqueous media (Fig. 1.1) with a high dielectric constant
(6,2280). The salt concentration of the electrolyte in the cell’s environment
is around 0.15-0.2 mol/1 [1,2]. The electrostatic properties of such electro-
lyte solutions have a considerable effect on the different processes occurring
in biological systems. The functioning of various processes (transport
through ion channels, DNA-protein interactions, action and mechanism
of biological molecules, etc.) would fail to work without them. Because
of their long-range character, electrostatic interactions are of fundamental
importance in understanding many biological processes. Many membrane
properties such as structure, rigidity, and dynamics are directly affected by
electrostatics [1].

1.1. Cell membrane structure and its electric properties

The main function of the biological membrane is to enclose the cell and the
interior of the cell’s organelles and separate them from their surroundings,
both in prokaryotes and eukaryotes. The backbone of a biological mem-
brane is built up of membrane lipids self-assembled into the lipid bilayer.
The forces holding the bilayer together originate from the amphiphatic
nature of membrane lipids. The heads of membrane lipids are polar (hydro-
philic) and the tails (or chains) are nonpolar (hydrophobic). The hydropho-
bic forces lead membrane lipids to hide their tails from water and, on the
other hand, to expose their heads to water (Fig. 1.2). Other components
of the biological membrane are various kinds of proteins (integral proteins,
peripheral proteins, structural proteins, etc.), glycoproteins, and glycolipids
embedded in the lipid bilayer.
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Figure 1.2 Schematic figure of a phospholipid bilayer (right) and the chemical structure
of a single phospholipid (phosphatidylserine) which is negatively charged (left).

There exist various kinds of cell membrane lipids. One of the most impor-
tant groups are phospholipids. The head of a phospholipid can be neutral with
a nonzero dipole moment or negatively charged. It is rather mysterious that
nature choose not to create positively charged membrane lipids. These can
only be made artificially (e.g., a surfactant sterylamine is positively charged).
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Neutral (zwitterionic) lipid heads have a dipole moment because the
phosphate group carries a negative charge and the alcohol (or aminoalcohol)
which esterifies the phosphate group usually has a positive charge. Zwitter-
ionic lipids include, for example, phosphatidylcholines, phosphatidylethanol-
amines, sphingomyelin, and others. However, some alcohols esterifying the
negatively charged phosphate group are neutral and thus the resulting charge
of the lipid headgroup is negative (Fig. 1.2). The most known negatively
charged phospholipids are phosphatidylserines, phosphatidylinositols, and
phosphatidylglycerols (cardiolipin). The ratio between neutral and negatively
charged lipids in plasma membranes is approximately 9:1 [3]. Phos-
phatidylserines are present, for example, in the inner part of the red blood cell
membrane. Cardiolipin, which has four fatty acid chains, is very abundant in
inner mitochondrial membranes. Though phosphatidylinositol is a minor
component in biological membranes, it plays an important role in guiding
membrane traffic and cell signaling [4].

Because of the presence of negatively charged lipids, the whole bilayer
can also be negatively charged. The maximum surface charge density of a
lipid bilayer is around —0.3 As/m? if the whole bilayer is composed only
of negatively charged lipids [5]. In nature, however, the surface charge den-
sity of phospholipid bilayers is considerably lower (according to the ratio
between negatively charged and neutral lipids in membranes). Negatively
charged lipids usually occupy the inner part of the membrane.

Besides the negative charge from the lipid bilayer, the whole cellular sur-
face can also be treated as uniformly charged because of the thick layer of
negatively charged glycoproteins covering the plasmatic membrane. The
average negative fixed charge on the cell surface is of the order of
—0.001 As/m” [6].

As it was already mentioned, charged surfaces in biological systems can
consist of macromolecules such as DNA, whole cells, liposomes created
from a mixture of neutral and charged membrane lipids, surfaces of implants,
and others. In this chapter, we focus on negatively charged liposome—
liposome and negatively charged implant—cell interactions.

> 2. THEORETICAL BASIS
2.1. Electric double layer theory

The interaction between charged surfaces in an electrolyte solution is
governed by the interplay between the electrostatic forces on the surfaces
and the entropy of ions moving between them due to their thermal motion.
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Entropy favors a uniform distribution of 1ons. On the other hand, electro-
statics prefers all counterions to be clustered at the surface and all co-ions
moved far away from it. The basic theory describing these interactions is
the theory of the electric double layer. According to this theory, freely mov-
ing counterions from the solution are distributed mainly near the charged
surfaces (without binding to them) and thus screen the surface electric
potential, whereas co-ions are mostly depleted from the surfaces, as is
described in Fig. 1.3.

The electric double layer has been the subject of extensive study since the
pioneering work of Gouy [7] and Chapman [8] around 1910. The so-called
Poisson—Boltzmann theory (PB theory) is the basic mean-field theory which
relates the electric potential to the spatial distribution of charges, subjecting
to the principles of statistical physics.

The basic problem which can be solved within PB theory is shown sche-
matically in Fig. 1.3. Two planar infinitely large equally charged surfaces are in
contact with a 1:1 electrolyte solution (e.g., NaCl) with surface separation D,
surface charge density o, and bulk concentration of ions 1, (in units 1/m”).
The electrostatic potential is constant in the yz plane and varies only with x.
The so-called Poisson—Boltzmann equation for a 1:1 electrolyte when

px, y, 2)=p(x) is [1,9,10]:

do(x) 2ne) . ep(x)
= sinh

g , 1.1
dx? £.&0 LT (1.1)

where ¢ is the elementary charge, k the Boltzmann constant, T the thermo-
dynamic temperature, and & and ¢, the vacuum permittivity and the relative
permittivity, respectively. Equation (1.1) can be solved for some approxi-
mate cases (e.g., in linearized form) analytically [1]. Without simplifications,
it can be solved only numerically. The solution of the equation depends on
the boundary conditions at the two charged surfaces. The boundary condi-
tions are derived from the condition of electroneutrality of the whole
system:

F(x=0)——" and L(x=D)=+—— (1.2)

From PB theory, the pressure between two surfaces can be derived. The
pressure 1s uniform across the gap between the surfaces and depends only on
the total concentration of ions in the midplane position Z;n,,(D) and on the
bulk ion concentration X;n,,;(0c0) for a certain value of D [1,10]:
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Figure 1.3 Schematic figure of the standard electric double layer problem. Two equally
charged surfaces are immersed in electrolyte solution. The number density distribution
of counterions and co-ions and the electric potential calculated from Eq. (1.1) are
also shown.



