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Preface

From the first appearance of the classic The Spectrum Analysis in 1885 to the
present the field of emission spectroscopy has been evolving and changing. Over
the last 20 to 30 years in particular there has been an explosion of new ideas
and developments. Of late, the aura of glamour has supposedly been transferred
to other techniques, but, nevertheless, it is estimated that 75% or more of the
analyses done by the metal industry are accomplished by emission spectroscopy.
Further, the excellent sensitivity of plasma sources has created a demand for
this technique in such divergent areas as direct trace element analyses in polluted
waters.

Developments in the replication process and advances in the art of pro-
ducing ruled and holographic gratings as well as improvements in the materials
from which these gratings are made have made excellent gratings available at
reasonable prices. This availability and the development of plane grating mounts
have contributed to the increasing popularity of grating spectrometers as com-
pared with the large prism spectrograph and concave grating mounts. Other
areas of progress include new and improved methods for excitation, the use of
controlled atmospheres and the extension of spectrometry into the vacuum
region, the widespread application of the tecliniques for analysis of nonmetals .
in metals, the increasing use of polychrometers with concave or echelle gratings
and improved readout systems for better reading of spectrographic plates and
more efficient data handling.

Many of the far-reaching and on-going changes in industry and environment
control would not have been possible without developments in spectroscopy,
and committees of ASTM are continuing their work on evaluation and consolida-
tion of procedures.

The available literature dealing with emission spectroscopy has until now been
scattered among myriad sources and we in the field have long recognized an
urgent need to gather the new ideas and developments together, in a convenient
format. However, the enormous amount of work involved in preparing a com-
prehengive treatise on the subject has been a deterrent. Finally, this major
collaborative effort was undertaken: Applied Atomic Spectroscopy, Volumes 1

vii



viii - PREFACE

and 2 have been written by a group of authors, each of whom has an intimate
and expert working knowledge of a special area within the discipline. Individual
chapters are treatments in depth of new developments, placed within an histori-
cal perspective, in many. instances incorporating much of the author’s own
experience.

I wish to extend my special thanks to all the collaborators for their coopera-
tion and patience. The courtesy. of the book ‘and journal publishers who gave
permission to reproduce figures and tables is gratefully acknowledged, with
special thanks to the U.S. Geological Survey.

We also wish to thank the many practicing spectroscopists for their sugges-
tions and help during the editing process, and last, though not least, Mrs. E. L.
Grove and Nancy Robinson for editing, typing, and hclpins to keop detail
in order,

E. L. Grove
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Photographic Photometry 1

James W. Anderson

1.1 INTRODUCTION

Photographic photometry is the process of measuring the intensity of radiant
energy of specific wavelengths in spectra recorded on a photographic emulsion.
Since the formation of a spectrogram takes a finite amount of time, the measure-
ment is more propetly the integration of intensity, or exposure.

Photography has played a major role in the development of spectroycopy
and spectrochemical analyses. In his-studies of the darkening effect of silver
chloride by the sun’s spectrum, Ritter") in 1803 noted that the maximum
darkening action was just. outside the visible spectrum—hence the discovery of
the ultraviolet region. Shortly after the development of the Daguerreotype
process in 1839,(*'3) which used sodium thiosulfate as the fixing agent, both
Becquerel(®) in 1842 and Draper(®) in 1842 and 1843 obtained photographs of
the solar spectrum.

The next important advance in photography was the development by
Maddox(®) in 1871 of the dry gelatine plate, which very quickly found wide-
spread use in spectroscopy. Its availability made-possible the much improved
wavelength measurements and improved catalogs of spectra, typified by Row-
land’s work(®”) published in 1887 and 1893. This subsequently led to the wide
use of the spectrograph.

Today, photography is one of the four methods for detecting and measuring
radiant energy, the other three being photoelectric, visual, and thermoelectric
or radiometric. Some characteristics of these four methods are compared in
Table 1.1. Wavelength range in the table refers to the spectral region for which
the method is useful. Contrast is the general slope of the curve in which the
response of the detector is plotted as-a function of the quantity of radiant en-
ergy, while linearity refers to how closely this plot approaches a straight line.

James W, Anderson © Consultant, Pleasantville, New York
1



2 CHAPTER 1

Table 1.1 Summary of Methods for the Measurement
of Spectral Intensities (Radiant Energy)

Wavelength
Method range (A) Contrast Linearity Neutrality Cumulative Panoramic
Photographic 10-11,000 High Poor Poor Good Excellent
Photoelectric 10-40,000 High Good ~ Poor Fair None
Visual : 3,900~-7,500 High Very poor Poor None - Limited

Thermoelectric 9,000-107 Low  Excellent Excellent  None None

A detector with high contrast is more sensitive to small changes of signal level
but is likely to have a smaller dynamic range or latitude than a detector with low
contrast, A detector is said to be highly neutral if the differences in its response
to radiant energy of different wavelengths are negligible; that is, it responds in
the same manner to the energy of one wavelength as to that of another. Because
photographic emulsions have poor neutrality and are also nonlinear in response,
they often require different calibrations in different wavelength regions. This is
illustrated in Fig. 1.1 as shown by Harrison et al.(*) The cumulative property
refers to the ability of the receptor to sum up exceedingly low intensities of light
by increasing the time of exposure, while the panoramic property means the
abjlity of a photographic emulsion to simultaneously record different wave-
- lengths of radiant energy on different parts of the plate or film.

Pictorial photography is concerned with the linear recording of visually
perceived illumination levels of objects under a heterochromatic light, whereas
photographic photometry of the spectrum requires precise quantitative compari-
sons of much fainter and essentially monochromatic beams of radiation. The
high sensitivity'to small changes of signal level and the cumulative and panoramic
properties of the emulsion are important for photometry, but linear recording
(which can be realized only over a limited exposure range) is not. Important
advantages of photographic photometry include the integration of light from
sources of time-varying brightness and production of a permanent record.

Fig. 1.1 Calibration curves for different wa' . The same scale, but different origins,
were used to prevent overlap. (From Harrison ef al. "



PHOTOGRAPHIC PHOTOMETRY 3
1.2 THE PHOTOGRAPHIC EMULSION

The photographic emulsion is a thin layer of gelatin containing a suspension
of very fine, light-sensitive silver halide crystals or grains. While the gelatin is in
the liquid state, it is coated on glass or on cellulose acetate or polyester base and -
allowed to dry.* Glass plates have an advantage with respect to dimensional
stability but are restricted to spectrographs with flat or moderately curved focal
planes. With standard plate widths of 2 and 4 in., they also provide more area for
accepting a greater number of spectrograms, which permits more latitude in
including exposures of standard samples for direct comparison to unknown
samples. Although film is subject to expansion and contraction and presents
some mechanical problems in processing and in being held flat in microphotom-
eters, it can readily be bent to steeply curved focal planes. Film also avoids the
obvious breakage damage to which glass is subject. In general, the emulsion layer
on glass plates is slightly thicker than on film, which tends to make th¢m more
sensitive. On the other hand, the emulsions on film products have a thin clear
gelatin overcoat of about 1 um for protection against abrasion and handling.
Kodak(®) specifically recommends that the emulsion surfaee of plates are not to
be wiped, because they are very soft when wet. - 4

“The light-sensitive material is a mixture of silver bromide with some silver
iodide and traces of nucleating compounds. The size of these crystals or grains is
carefully controlled within narrow limits because many properties of an emul-
sion are grain-size-dependent. The average grain size may vary from about 5 um
in diameter for fast emulsions to submicroscopic for the slow Lippman emul-
sions. In general, the larger the average grain size, the more sensitive the film
(partly because larger grains intercept more of the incident energy per grain) and
the lower the contrast of the emulsion. The converse is-also true, and thus one
can expect that a fine-grained emulsion is generally slow with high contrast. This
natural association of emulsion characteristics is unfortunate because the most
desirable emulsion should have the finest grain possible to provide sharp resolu-
tion and yet be fast at the same time.

Another characteristic of an-emulsion is the dynamic mge over which it
responds to radiation. The logarithm of the useful dynamic range or latitude
varies inversely with the contrast or gamma of the emulsion. Both latitude and
‘contrast also depend upon the minimum number of quanta a grain must absorb
before it becomes developable and upon the dispersion of grain sizes about the
average grain size of the emulsion. This is illustrated in Fig. 1.2; in which curve
2 represents a low-speed emulsion with high contrast, short latitude, and rela-
tively poor sensitivity.

*In some special emulsions, more than one such coating may be applied. If two or more
“coatings are_applied, theyu:naﬂydiffetinminmmdmﬁﬂmy The purpose of this
procedure is to extend the dynamic range for visual photography.
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2 Low Speed
o
: : e’
High_SM
£ Fig. 1.2 Characteristic curves for
L / ' typical emulsions with high and
i, [ lo geeds. (From Harrison et
loglE)——— al.Ym 3

Speed, contrast, and latitude are all functions of wavelength. Both the
absorbance of the photosensitive layer and the number of quanta that a grain
must absorb before it can be developed depend upon wavelength. The absor-
bance of the photosensitive layer is by the gelatin substrate as well as by the
silver halide grains embedded in the substrate. The absorption by gelatin, which
begins below 2500 A, affects-the contrast of the emulsion, while the absorption
by silver halide affects both sensitivity and contrast. These effects can be modi-
fied by various sensitizing dyes which are added to the emulsion to improve
response at wavelengths above 5000 A, where the silver halide itself is transparent.
Gradient is a measuremént of contrast in terms of the slope of the straight line
between two specified densities on a characteristic curve. Eastman Kodak has
described typical variations in gradients for different emulsions in which they

3.0 T T T T T .9 T

T -

Gradient

A

L I ) i L
2000 3000 4000 5000 6000 7000 8000 9000

Wavelength , A

Fig. 1.3 Approximate gradient-wavelength curve for some typical spectrographic (plates)

L]



