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Preface

This book is a supplement to Ken Rosen’s text Discrete Mathematics and its
Applications, Third Edition, published by McGraw-Hill. It is unique as an ancillary to
a discrete mathematics text in that its entire focus is on the computational aspects of
the subject. This focus has allowed us to cover extensively and comprehensively how
computations in the different areas of discrete mathematics can be performed, as well
as how results of these computations can be used in explorations. This book provides
a new perspective and a set of tools for exploring concepts in discrete mathematics,
complementing the traditional aspects of an introductory course. We hope the users of
this book will enjoy working with it as much as the authors have enjoyed putting this
book together.

This book was written by a team of people, including Stan Devitt, one of the principle
authors of the Maple system and Eithne Murray who has developed code for certain
Maple packages. Two other authors, Troy Vasiga, and James McCarron have
mastered discrete mathematics and Maple through their studies at the University of
Waterloo, a key center of discrete mathematics research and the birthplace of Waterloo
Maple Inc.

To effectively use this book, a student should be taking, or have taken, a course in
discrete mathematics. For maximum effectiveness, the text used should be Ken
Rosen’s Discrete Mathematics and its Applications, although this volume will be
useful even if this is not the case. We assume that the student has access to Maple,
Release 3 or later. We have included material based on Maple shareware and on
Release 4 with explicit indication of where this is done. (Where to obtain Maple
shareware is described in the Introduction.) We do not assume that the student has
previously used Maple. In fact, working through this book can teach students Maple
while they are learning discrete mathematics. Of course, the level of sophistication of
students with respect to programming will determine their ability to write their own
Maple routines. We make peripheral use of calculus in this book. Although all places
where calculus is used can be omitted, students who have studied calculus will find
this material of interest.

This volume contains a great deal of Maple code, much based on existing Maple
functions. But substantial extensions to Maple can be found throughout the book; new
Maple routines have been added in key places, extending the capabilities of what is
currently part of Maple. An excellent example is new Maple code for displaying trees,
providing functionality not currently part of the network package of Maple. All the
Maple code in this book is available over the Internet; see the Introduction for details.
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This volume contains an Introduction and ten chapters. The Introduction describes the
philosophy and contents of the chapters and provides an introduction to the use of
Maple, both for computation and for programming. This chapter is especially
important to students who have not used Maple before. (More material on
programming with Maple is found throughout the text, especially in Chapters 1 and 2.)
Chapters 1 to 10 correspond to the respective chapters of Discrete Mathematics and its
Applications. Each chapter contains a discussion of how to use Maple to carry out
computation on the subject of that chapter. Each chapter also contains a discussion of
the of the Computations and Explorations found at the end of the corresponding
chapter of Discrete Mathematics and its Applications, along with a set of exercises and
projects designed for further work.

Users of this book are encouraged to provide feedback, either via the postal service or
the Internet. We expect that students and faculty members using this book will
develop material that they want to share with others. Consult the Introduction for
details about how to download Maple software associated with this book and for
information about how to upload your own Maple code and worksheets.
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Introduction

An introduction to discrete mathematics is usually taught in a tradi-
tional way. Concepts, applications, and problem solving techniques are
presented with worked examples provided to illustrate key points. The
questions included in the textbook exercise sets to reinforce these key
points are designed to be solved without a large amount of computa-
tion. But today, with modern mathematical computation software, such
as Maple, complicated computations can be carried out easily and quickly.
Having such computational tools provides a new dimension to a course
in discrete mathematics course, namely an enquiring and ezperimental
approach to learning. This book is designed to bridge the traditional
approach to learning discrete mathematics and this new enquiring and
experimental approach.

Using computational software, students can experiment directly with
many objects important in discrete mathematics. These include sets, large
integers, combinatorial objects, graphs, and trees. Furthermore, by using
interactive computational software to do this, students can explore these
examples more thoroughly thereby fostering a deeper understanding of
concepts, applications, and problem solving techniques.

This supplement has two main goals. The first is to help students learn
how to carry out computations in discrete mathematics using Maple, a
widely used software package for interactive mathematical computation.
The second is to guide students through the process of mathematical dis-
covery through the use of computational tools. This exploration is based
on the use of Maple.

Structure of This Volume

This supplement begins with a brief introduction to Maple, its capabilities
and its use. Our goal is to provide students new to Maple with the requisite
background. The material in this introduction explains the philosophy
behind working with Maple, how to use Maple to carry out computations,
and the basic structure of Maple. Maple is more than just a computational
engine; it also is a programming language. Consequently, this introduction
continues by explaining the basic constructs for programming with Maple.
For those new to Maple, this material is important for understanding
Maple procedures and their use.



2 Interactive Maple

Besides the introduction, the main body of this book contains ten chap-
ters. Each chapter is based on a chapter of Discrete Mathematics and its
Applications, third edition, by Kenneth H. Rosen, published by McGraw
Hill (henceforth referred to as the text). A chapter begins with comprehen-
sive coverage explaining how Maple can be used to explore the topics of
the corresponding chapter of the text. This coverage includes a discussion
of relevant Maple commands, as well as many new procedures, written ex-
pressly for this book. Many worked examples illustrating how to use Maple
to explore topics in that chapter are provided. Additionally, a discussion of
many of the Computations and Explorations in the corresponding chapter
of the text is provided. Often, these exercises ask students to carry out a
series of computations to explore a concept or study a problem. Here, we
provide guidance, partial solutions, and sometimes complete solutions to
these exercises. Finally, each chapter concludes with a set of additional
questions for the students to explore. Some of these are straightforward
computational exercises, while others are more accurately described as
projects requiring substantial additional work, including programming.
Consequently, this set of exercises is labeled Exercises/Projects.

The backmatter of this book includes an extensive index. Programming
examples appear throughout the book, but even so, some supplementary
programs were developed to facilitate the exposition and discussion. These
supplementary programs are also listed.

This volume has been designed to help students achieve the main goals of
a course in discrete mathematics. These goals, as described in the pref-
ace of the text, are the mastery of mathematical reasoning, combinatorial
analysis, discrete structures, applications and modeling, and algorithmic
thinking. This supplement demonstrates how to use the interactive com-
putational environment of Maple to enhance and accelerate the achieve-
ment of these goals.

Interactive Maple

Exploring mathematics with Maple is like exploring a mathematical topic
with an expert assistant at your side. As you investigate a topic you should
always be asking questions. In many cases the answer to your question
lies in an experiment. Maple, your highly trained mathematical assistant,
can often carry out these directed experiments quickly and accurately.
Often this requires only a few simple directives (commands).

By hand, the magnitude and quantity of work required to investigate
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even one reasonable test case may be prohibitive. By delegating the detail
to your mathematical assistant your efforts are much more focussed on
choosing the right the mathematical questions and on interpreting their
results than in a traditional computational environment.

The reasons an interactive system such as Maple supports such rapid
investigation include the fact that:

1. The types of objects you are investigating already exist as part of
the basic infrastructure provided by the system. This includes sets
(ordered and unordered), variables, polynomials, graphs, arbitrarily
large integers and rational numbers, and most importantly, support
for exact computations.

2. Tools for manipulating those objects already exist, or can be created
easily by essentially mimicking the interactive solution to a particular
problem.

Current day calculators are appropriate for simple numerical investiga-
tions, but they do not allow you to effectively investigate more compli-
cated mathematical structures or to quickly prototype multistep methods
for manipulating those complicated structures.

On the other hand, more traditional programming languages, the kind
used to build Maple, almost all of your effort goes into just building an
appropriate environment (potentially years of work).

An Example

The use of Maple is merely a means to the end of achieving the goals of a
course in discrete mathematics. Yet, with any tool, to use it effectively you
must have some basic understanding of the tool and its capabilities. In
this section we introduce Maple by working through a sample interactive
session.

A new Maple session begins by starting the Maple program. It presents
you with a blank Maple worksheet, much as any word processor would
begin by presenting you with a blank page. You can continue an old
session by ”opening” an old document, or by specifying the name of such
a document at the time you start Maple.

The Maple session then proceeds by entering Maple comments, and study-
ing Maple’s responses (which appear in the document) and inserting com-
ments. The comments are entered as paragraphs, much as in any word
processor. The document is called a Maple worksheet.
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For the most part, a Maple worksheet behaves much like any word proces-
sor document. You create descriptions or commands by typing, backspac-
ing, and generally editing the contents of the document using all the
standard operations of a word processor.

It differs from a word processor document in that selected paragraphs
(or lines of input) can be designated as being command input regions.
These command input regions are somewhat restricted in that they must
contain only valid Maple commands.

However, if you press ENTER anywhere on a line containing a complete
Maple command the command is handed off to the Maple computational
engine, the requested computations are carried out, and then inserted into
the document in the paragraph immediately following the command.

Thus, it is just like editing a document with an eager mathematical as-

sistant at your side, waiting for you to delegate various mathematical
tasks.

Typically, upon starting Maple, the cursor is placed on a new line begin-
ning with a special prompt character > . This "prompt” indicates that
you are in a command region. You proceed by typing your command and
pressing the Enter key.

In the sample session which follows, the Maple commands are shown in
a distinct font on lines beginning with the special prompt character > .
Typically, they consist of mathematical formulae together with a function
indicating what action or transformation is to be performed, and ending
in a semi-colon.

Complete commands end in semi-colons (;). This is so that more than one
maybe grouped on one line. In the absence of a terminating semi-colon
Maple normally expects the command to be completed on the next line.

To execute a command, make sure that the insertion point is some where
on the line containing the command, and press Enter to compute (or
re-compute) the result and display the answer.

Symbolic algebra systems are impressive in terms of the range and type
of computations they can do.

Three typical commands® and their results are as follows.
> Sum( (i+5)°3,i=1..n);

1 The semi-colons are essential parts of the commands (serving to indicate comple-
tion). Also, In the last two commands, the double quote " is used to indicate the “value
of the last computed result”.
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(i+45)°

n

2

> expand(");

n
> (@ +15i% + 75i + 125)

=1
> value(");
1 9 121
Z(n+1)4+§(n+1)3+T(n+1)2+90n-35

The result produced by each command is inserted immediately following
the actual command.

A First Encounter with Maple

As already indicated, working with Maple is like working with an expert
mathematical assistant. This requires a subtle change in the way you
think about a problem. Instead of focusing on “how do I do XYZ?” your
primary role becomes that of deciding “what” needs to be done next.

Much of discrete mathematics is about understanding the relationship
between actual objects or sets of objects and mathematical models that
are set up to capture some property of these objects. Understanding these
relationships often requires that you view either the objects or the asso-
ciated mathematical model in different ways.

Maple allows you to manipulate the mathematical models almost casually.
For example, the polynomial (z 4 (z + z)y)® can be entered into Maple
as the command
> (x + (x+z)*y )73,
(x+ (z+2)y)?

The result of executing this ”command” is displayed immediately after
the command. In this case Maple simply echoes the polynomial as no
special computations were requested.

The power of having a mathematical assistant now becomes apparent be-
cause a wide range of standard operations become immediately available.
For example, you can expand, differentiate, integrate simply by deciding
that this is what is needed. Maple uses (”) to refer to the value of the
previous computation. Thus a full expansion of the previous polynomial
takes place in response to the command
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> expand(");
2} +3yz®+32%y2+3y223 +63%22 24329222 + 222 + 3% 222
+3y3x22+4%2°

Perhaps you wish to view it as if it were actually a polynomial in  with the
y’s and 2’s placed in the coefficients. To collect the previous polynomial
as a polynomial in z, use the command
> collect( " , x );
(¥ +3y° +1+3y)2’ + Byz+3y° 2+ 637 2) 2% + 3y° 2° + 397 2%z
+43 28

To return to a factored form, simply request that the previous result be
factored.
> factor(");
(z4+yz+y2)?

The flexibility to move quickly between different representations of the
same object will prove to be extremely useful when looking for a solution
to a problem.

Armed with this kind of expert mathematical assistant, experiments (even
complicated ones) can be run quickly so that you are freer to explore ideas
and models.

A second very important benefit is that the particular computations that
you choose to perform (even lengthy ones) are performed accurately. Thus,
the feedback you do get from your experiments is much more likely to
be feedback on the model you had chosen rather than nonsense arising
because of a simple arithmetic error.

Finally, the sheer computational power of such an assistant allows you to
run much more extensive experiments. This can be important when trying
to establish or identify a relationship between a mathematical model and
a collection of discrete objects.

An Interest Rate Problem

To see how working with a computational assistant like Maple can help
with the problem solving process let us build a model for computing com-
pound interest at (say) 10% interest per annum, compounded annually.

In almost every investigation it is helpful to start with a particular exam-
ple. Thus we consider a case where the initial balance is given by:
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> p(0) = 1000;
p(0) = 1000

We will want to refer to this equation again so we give it a name, say eq0
by using the name assignment operator := . (Remember that ( ” ) refers
to the previously evaluated expression!)
> eq0 =" ;
eq0 := p(0) = 1000

The interest rate can be given similarly by the (named) equation eql as
in
> eql := (i=.1);
eql :==1=.1

The total deposit p(1) at the end of the first interest period is related to
p(0) by the equation
> p(1) = p@0) +1i * p(0);
p(1) = p(0) +1p(0)

To compute a numerical value for p(1), we simply use the equation eq0
and eql to substitute in a specific values for 7 and p(0). This is easily done
via the subs command as in
> subs( {eq0, eql} , " );
p(1) = 1100.0

We now have a specific solution for one interest period. Also, we have
invested some effort in setting up the problem using the correct notation
for the mathematical assistant. How does this help us?

1. We can now easily re-compute specific examples for different values of
p(0) and 4. Such recomputations are often used to gain more insight
or to test the model for extreme cases. For example if the interest rate
is 0, we would expect p(1) and p(0) to be equal. (This kind of test
helps us to verify that our model makes sense.) To verify this here, go
back to the command line defining eql and by selecting and typing,
change the value of i to 0. Then simply hit the ENTER key several
times until a new value for p(1) is computed.

Note that without further typing or data entry, each time you hit
ENTER, the current command is executed and the cursor advances
to the next command. This allows you to run through the steps of
your emerging model quickly.



