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PREFACE

The field of natural product chemistry continues to attract the attention of some of
the foremost chemists today. The vast diversity of natural Products available from
the plant and animal kingdoms offers an unlimited source of novel compounds,
many of which can find potential applications in medicine. Natural product
chemistry has evolved with growing emphasis on isolating bioactive natural
compounds. The synthetic programs are similarly directed towards bioactive natural
products, many of which have been hitherto obtainable only in smail quantities
from natural resources, in much larger quantities by synthesis or by preparing new
analogues which will have a higher activity and lower toxicity than the parent
compounds. The present volume, which is the 13th in the series, specifically covers
the field of such bioactive natural products and presents research being carried out
on a wide variety of compounds including fungal metabolites, anti-cancer alkaloids,
oligonucleotides, bioactive terpenes, anti-tumor antibiotics, cytochalasans, indole
alkaloids, flavors, biologically active carba-sugars, etc. The in-depth presentations
on some of the current frontiers of natural product chemistry should prove to be of

wide interest.

We wish to express our sincere thanks to Dr. Zahir Shah, Miss Farzana Akhtar and
Mr. Ejaz Ahmad Soofi for their assistance in the preparation of the index. We are
also grateful to Mr. Waseem Ahmad and Mr. Habib Alam for typing, Mr.
Mahmood Alam for secretarial assistance and Ms. Barbara Castagna of Abbott

Laboratories for her assistance in preparing this volume.

ATTA-UR-RAHMAN
FATIMA Z.BASHA
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FOREWORD

The synthesis of natural products has long fascinated organic chemists and
has provided the perfect challenge to, and test of, their steadily developing
* synthetic powers. One attraction of this area of synthesis is the knowledge that
the target molecules can be built, since obviously they have been constructed step
after step by the biosynthetic machinery of the micro-organism or plant or
animal. These synthetic transformations in living systems show exquisite control
of regio-, chemo-, and stereo-selectivity and these are the standards to which we
as synthetic chemists strongly aspire. In fact, enormous progress has been made. »
It is not a vast age ago, about forty years or so, that a successful synthesis was -~
one which produced the right product even though in many cases one could not
avoid the production of isomers and substantial quantities of by-products.
Gradually the ability grew to assert control over reactions and especially over
regio-chemistry and stereochemistry. Hand in hand, and increasingly over recent
times, came delightful developments allowing control of the configuration of
newly generated chiral centres. This phase largely involved stoichiometric
methods at first but steadily over the last years, catalytic approaches have been
developed. Enantioselection approaching that of enzymes is now being reported
with accelerating frequency and this trend is certain to continue. i
The present volume collects together a wide range of contributions which |
illustrate many of the recent developments I have alluded to already. The topics }
encompass the chemistry inter alia of terpenes, alkaloids, flavours, microbial l
metabolites including antibiotics, nucleotides, amino acids and carbohydrates. It I
z

is a varied feast and each chapter is written by chemists who are authorities in

their chosen fields. No narrow view is taken and we see chapters covering the

use of enzymes in synthesis, one on the biological effects of natural products and

a third giving a broad survey of pharmacognosy. These complement the majority

of the chapters which deal mainly with synthetic problems. 5
Surely this book will be read with benefit and pleasure by any red-blooded

organic chemist. It is also certain that students will learn much from it and for

teachers, it provides a supermarket of examples for synthetic course work. So

this broad survey of topics is particularly welcome.

Cambridge

¥,
12 November 1992 %‘ g & é‘

7!

Professor Sir Alan Battersby
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Synthesis of Di- and Triquinane Sesqui-,di-
and Sesterterpenes----Columbus Style

Leo Armand Paquette

The discovery of the steroids, the recognition of their central role in the life
process, and the identification of their modes of action contributed to the
enormous synthetic effort dedicated to this class of molecules for several decades.
As a result, synthetic methods suited to the elaboration of polycyclic six-
membered ring systems were developed. The most well known of these
constructions is the Robinson annulation reaction [1].

Approximately fifteen years ago, we became aware that the characterization
of polyquinane molecules from natural sources was being reported at increasingly
frequent intervals. Since very little was known at that time about the rational,
mechanistically-based design of polycyclopentanoid compounds with suitable
control of stereochemistry [2], we initiated synthetic activity in this area. The
considerations that prompted our entry into polyquinane natural products
chemistry have proven attractive to many research groups in the intervening years.
As a consequence, an impressive array of methods for preparing fused
polycyclopentanoid systems is now available [3]. In fact, this activity can be
singled out as one of the most dynamic and imaginative undertakings in synthetic
organic chemistry in the last decade.

The studies to be described herein were formulated in order to gain access
to a number of the terpenoids that fit the polyquinane description. To be sure,
many related achievements deserve to be recognized. However, space
requirements dictate that the present chapter be confined to those developments
arising from research undertaken at The Ohio State University. The overview will
focus initially on angular triquinanes, progress to more highly oxidized congeners
of these systems, present those tactics associated with linear and propellane
triquinane synthesis, and conclude with an examination of routes to structurally
related substances.

A. ANGULAR TRIQUINANES

The carbocyclic cores of the triquinane sesquiterpenes feature either the
tricyclo[6.3.0.04-8]Jundecane (1), tricyclo[6.3.0.03.7]Jundecane (2), or
[3.3.3]propellane network (3). The serial fusion of three five-membered rings in
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the second instance has caused compounds of this class to be designated as linear
triquinanes. Molecules of type 1 are commonly refeired to as angular triquinanes.
All three groups have served as enormously fertile testing grounds for the
development of useful new synthetic reactions.

1. Isocomene. The sesquiterpene hydrocarbon 4, known as isocomene,
was independently isolated by two groups in 1977 [4,5]. Although 4 contains four

contiguous stereogenic centers, the location of three of these carbon atoms at
points of ring fusion was certain to reduce complexity dramatically. From the
outset [6], our plan for the construction of this target was to take advantage of an
attractive cyclopentannulation protocol that had just been devised by Marfat and
Helquist [7]. For this purpose, bicyclic enone 5 was required and this intermediate
was produced on large scale by Yoshikoshi's direct route [8]. When 5§ was
exposed to the magnesio cuprate derived from B-bromopropionaldehyde ethylene
ketal, conjugate addition occurred smoothly to provide 6 (68%, Scheme I). Entry
cis to the angular methyl group was mandated by steric accessibility to the B face
and by the significantly greater thermodynamic stability of cis-
bicyclo[3.3.0]octanes relative to their trans isomers [9]. The stereochemical
inhomogeneity of the a-carbonyl site was of no consequence since it was soon to
be rectified.

In order to explore the merits of the latent aldehyde functionality as an
initiator of ring cyclization, 6 was treated with methyllithium and the tertiary
carbinol so produced was directly dehydrated (79%). In sterically hindered
cyclopentanones such as 6, Grignard-induced enolization can prove to be a serious
complication. This issue was conveniently skirted by repeated sequential
exposure to CH;Li and methanol (1 equiv) prior to workup. Furthermore, the use
of thionyl chloride in pyridine as the dehydrating agent resulted in exclusive
introduction of the more highly substituted double bond.
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Subsequent mild hydrolysis of 7 in aqueous acetic acid at room temperature
resulted in the formation of both aldehyde 8 (62%) and tricyclic alcohol 9 (19%).
These results served as an early indication of the facility with which 8 enters into
ene-type cyclization [10]. When this closure was performed independently in the
presence of stannic chloride, the conversion did indeed prove to be highly efficient

(95%) and nicely regiocontrolled.

With an efficient approach to 9 available, the stage was set for oxidation to
10 (77%) and introduction of an o,B-unsaturated double bond by means of
organoselenium technology [11] (88%). At this point, the high conformational
rigidity of 11 and the approximate planarity of its cyclopentenone ring were
revealed by the rather disparate chemical shifts of the a (5 5.94) and B (8 7.31)

protons in CDCl5 solution.
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From a tactical viewpoint, the nonangular methyl substituent remaining to
be introduced can be seen to reside on the less encumbered surface of the five-
membered ring to which it is bonded. In agreement with the principles of steric
approach control, lithium dimethylcuprate condensed with 11 to deliver only 12,
direct reduction of which under modified Wolff-Kishner conditions [12] produced
isocomene in 80% overall yield for the two steps.

As will become apparent, the cyclopentannulation approach constitutes a
reliable tool for the expedient synthesis of structurally more elaborate angular
triquinanes.

2. Pentalenene. The least oxidized precursor to the pentalenolactone class
of antibiotics has been identified as pentalenene (13) [13]. Produced by the

CHa

13

cyclization of humulene, this sesquiterpene is also related biogenetically to the
illudoids [14], the coriolins [15], marasmic acid [16], and fommanosin [17], very
likely by means of the protoilludyi cation [18].

Careful analysis of the ‘structural features of 13 led to the decision to
proceed via the bicyclic chloro enone 19 (Scheme II) [19]. To this end, silyl enol
ether 14 was engaged in a [2+2] cycloaddition with dichloroketene with the
expectation that the usual regioselectivity observed for such reactions [20]

Et,Si0 ¢ HO I

CH, jOSiE‘a CLCHCOCI  CH, .c) CHOH  CHs c
CHB\“\‘ (CZHS)JN CHa“s H* CHJ‘“‘ : OCH3
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H,O, THF
Cl Ho P _ HO ClI
CH, Zn CH, y CHgN, CH, Gl
3 o} 0, =
CHj" HOAc CHj3' CHj5" o
H o H
19 18 17
Schemelll




would be adhered to. Indeed, cyclobutanone 15 was uniqueily produced (83%).
When dissolved in acidic methanol, this sensitive intermediate was transformed
into hemiketal 16, a stable and relatively nonvolatile substance from which
admixed Et;SiOMe could be removed in vacuo. The issue of ring expansion was
explored following the liberation of 17. As anticipated [21], the action of
diazomethane resulted in preferential migration of the unsubstituted methylene
group to furnish 18 in 50% overall yieid from 15. The immediate consequence of
this selectivity was the possibility of obtaining 19 by subsequent reduction with
zinc dust in acetic acid at room temperature. Especially noteworthy are the
quantitative nature of this transformation and the capacity for producing
reasonable amounts of 19 in excellent overall yield (43%).

The functional group array in 19 lent itself quite satisfactorily to
condensation with lithium di-3-butenylcuprate to deliver 20 (76%). The time had
now arrived to utilize the second chlorine atom to direct the introduction of a
needed double bond (Scheme III). In order to streamline the synthesis, the
stereoisomeric chlorohydrins 21 obtained by the addition of methylmagnesium
bromide to 20 were ozonolyzed and acetalized in advance of reduction with
lithium in liquid ammonia [22]. This series of reactions could be performed
without the purification of 22, thereby permitting substantial throughput of
material to 23 (59% from 20).
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From the background experience gained from processing 8, it seemed
opportune to investigate the hydrolysis of 23 and 24 together with the Lewis acid-
promoted cyclization of this aldehyde. As before, some ring closure was already
observed during the deblocking maneuver. Once again, purposeful installation of
the third five-membered ring with SnCl, and oxidation of the resulting tricyclic




