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Preface

This book is an entirely rewritten English version of the lecture notes of
an advanced course I taught during the last eleven years at the Faculty of
Mathematics of “Al. I. Cuza” University of Iagi. Lecture notes appeared in
2001 in Romanian. The idea was to give a unified and systematic presen-
tation of a fundamental branch of operator theory: the linear semigroups.
The existence of several very good books on this topic such as: Ahmed [2],
Belleni-Morante [24], Butzer and Berens [32], Davies [45], Engel and Nagel
et al [51], Goldstein [61], Haraux [68], Hille and Phillips [70], McBride [89],
and Pazy [101] made this task very hard to accomplish. Nevertheless, I de-
cided to accept it, simply because there are several particular topics which
have not found their place into a monograph until now, mainly because
they are very new. This book, although containing the main parts of the
classical theory of Cp-semigroups, as the Hille-Yosida theory, illustrated by
a wealth of applications of both traditional and non-standard mathematical
models, also includes some new, or even unpublished results. We refer here
to: the characterization in terms of real regular values of both differentiable
and analytic semigroups, the study of elliptic and parabolic systems with
dynamic boundary conditions, the study of linear and semilinear differen-
tial equations with distributed measures, as well as a finite-dimensional like
treatment of semilinear hyperbolic equations, mainly due to the author. As
far as I know, some other topics appear for the first time in a book form
here: the equations of linear thermoelasticity, the equations of linear vis-
coelasticity and the characterization of generators of equicontinuous and of
compact semigroups, being the most important ones. Besides, the last part
of the book contains detailed solutions to all the problems included at the
end of each chapter.

There are some interesting topics which, although useful, were not
discussed in this book. In this respect I would like to mention the spectral
mapping theorems and a thorough study of the asymptotic behavior of
solutions. Moreover, in order to avoid some slight complications, most
of the results in this book refer only to Cp-semigroups of contractions,

xi



xii Preface

although they hold true for general Cp-semigroups, i.e. of type (M,w).
However, I assume that the interested readers will be able to fill in this
gap, if necessary.

I believe that someone who has some acquaintance with functional
analysis and differential equations can read the book. Therefore, I hope
that it will be found useful not only by graduate students and researchers
in Mathematics to whom it is primarily addressed, but also by physicists
and engineers interested in deterministic mathematical models expressed
in terms of differential equations.

I am greatly thankful to my former professors and students, as well
as to my colleagues and friends who helped me to clarify many ideas and
to organize the presentation. More specifically, I am grateful to professor
Viorel Barbu for the courses he taught, which had a decisive influence on
my further evolution, and for his unceasing interest in my efforts. The
discussions with Professor Dorin Iesan were of great help to me in order
to clarify some aspects concerning the examples in Mechanics presented in
Sections 4.8, 4.9 and 10.5. The writing of this book was facilitated by a very
careful reading of the manuscript followed by many suggestions and com-
ments by Professors Ovidiu Carja, Mihai Necula and Constantin Zalinescu,
by Dr. Corneliu Ursescu, Senior Researcher at The ”Octav Mayer” Institute
of Mathematics of the Romanian Academy, as well as by Dr. Silvia-Otilia
Corduneanu. Both Professor Catalin Lefter and my former student Eugen
Virvirucad read the entire Romanian version of the manuscript and made
several useful remarks I took into account in the presentation. Dr. Ioana
Sirbu from SUNY at Buffalo was of great help to make the English read
smoothly.

It is a great pleasure to express my appreciation to all of them.

Tagi, November 12*, 2002 Ioan I. Vrabie
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CHAPTER 1

Preliminaries

The aim of this chapter is to give a brief presentation of some auxiliary notions and
results which are needed for a good understanding of the whole book. In the first
two sections, we define and study the class of vector-valued measurable functions
as well as the integral of such functions with respect to a o-finite and complete
measure. In the third section, we recall the definition of the spaces LP (2, u; X) and
LP(Q, p; X), with (2, Z, p) a o-finite and complete measure space, and X a Banach
space, and we recall their most remarkable properties. Also here, we present some
properties of W*P(a,b; X) and A*P(a,b; X). The fourth section is devoted to a
short presentation of the space BV ([a,b]; X) of functions of bounded variation
from [a,b] to X, while in the fifth section, we collect 'several results referring
to Sobolev spaces, exactly in form they will be used later in the book. The sixth
section contains some basic facts concerning unbounded linear operators in Banach
spaces, with main emphasis on self-adjoint and respectively skew-adjoint operators
acting in Hilbert spaces. In the seventh section, we include several spectral analysis
results with regards to unbounded, closed linear operators on Banach spaces, while
in the last two sections, we introduce and study the Dunford integral in order to
offer an elegant way to define the value of an analytic scalar function at such an
operator.

1.1. Vector-Valued Measurable Functions

Let X be a real Banach space and (2, X, ) a o-finite and complete measure
space. We recall that 4 : ¥ — R, is o-finite if there exists a family
{Qn; n € N} C X such that u(Q,) < +oo for each n € N and Q = UpenQy,.
The measure p is called complete if each subset of a null y-measure set is
measurable (belongs to X).

Definition 1.1.1. A function z : @ — X is called:

(1) countably-valued if there exist two families: {Q,; n € N} C ¥ and
{zn; n e N} C X, with QN Q, = 0 for each k # p, Q = Up>0h,
and such that z(w) = z, for all w € Qy;

1



2 Preliminaries

(i1) almost separably-valued if there exists a p-null set g such that
z(§2\ Qo) is separable;

(iii) strongly measurable if there exists a sequence of countably-valued
functions convergent to z u-a.e. on {2;

(iv) weakly measurable if, for each z* € X*, the function z*(z) : @ - R
is measurable!.

Definition 1.1.2. A subset A in X* is called determining set for X if for
each z € X we have

2]l = sup{|z”()|; =" € A}.

Remark 1.1.1. If A is a determining set for X then its elements have the
norm at most equal to 1. This is a consequence of the definition of the
usual sup-norm on X*.

Theorem 1.1.1. Each separable Banach space has at least one countable
determining set.

Proof. Let {z,; n € N} a dense subset in X. Since for each z € X we
have
2]l = sup{|z*(2); 2" € X, [l«"|| = 1},
it follows that there exists a family {z}, ,,; n,m € N} in the unit closed ball
in X*, such that, for each n € N,

i [z, ()| = ol
As |z}, .|l = 1 for n,m € N, ||z, = sup{|z}, ;,(zn)|; m € N} for each

n € N and {z,; n € N} is dense in X, we deduce that
2|l = sup{|z, ,,(2); n,m € N}
for each z € X. The proof is complete. O

Theorem 1.1.2. If X admits a countable determining set A andz : Q - X
is weakly measurable, then ||z|| : @ — R, is measurable.

Proof. Since the supremum of a countable family of real measurable
functions is a measurable function and

z(w)|l = sup{|z”(z(w))|; =" € A}
for each w € (2, where each function z*(z) is measurable, it follows that
||z|| has the same property and this achieves the proof. O

1Some authors prefer the term scalarly measurable instead of weakly measurable,
keeping the latter term for those functions z :  — X with the property that, for each
weakly open subset D in X, z~*(D) € .



Vector-Valued Measurable Functions 3

Theorem 1.1.3. (Pettis) A function z : & — X 1is strongly measurable if
and only if it is weakly measurable and almost separably-valued.

Proof. Necessity. As z is strongly measurable there exists a sequence
(zn)nen of countably-valued functions and a p-null set g, such that
lim zp,(w) = z(w) (1.1.1)
n—oo
for each w € 2\ Q. But each function in the sequence is at most countably-
valued, and thus Up>o{z,(w); w € €1} is at most countable and dense in
z(2\ Q). Hence z is almost separably-valued.
From (1.1.1) we conclude that, for each z* € X* and w € Q \ Qp, we have

lim z*(z,(w)) = z* (z(w)).

n—oo
Taking into account that the functions z*(z,) are almost countably-valued,
and thus measurable, it follows that z*(z) is measurable.
Sufficiency. Since z is almost separably-valued, we may assume with no
loss of generality that X is separable. Indeed, if X is not separable, let us
consider the p-null set Qp such that z(€Q\ Q) is separable and let Y be the
closed linear subspace spanned by z(€2 \ ©y). Obviously this is separable
and, in addition, z coincides p-a.e. with a function y defined on Q and
taking values in Y. It is easy to see that y is strongly measurable if and
only if z enjoys the same property. Similarly, = is weakly measurable if
and only if y is weakly measurable, since, by virtue of the Hahn-Banach
theorem (see Theorem 2.7.1, p. 29 in Hille and Phillips [70]), each linear
bounded functional on Y coincides with the restriction of a linear bounded
functional on X.
So, let {z,; n € N*} be a dense subset in X and let € > 0. We define

Q) ={wez(w) #0} and Q) ={w € Qy; ||z(w) — z,|| <€}

for n € N*. From Theorems 1.1.1 and 1.1.2, it follows that both 2 and
(¥, are measurable. Since {z,; n € N*} is dense in X, we deduce that, for
each € > 0,

U =9, (1.1.2)

n>1

Indeed, if we assume by contradiction that this is not the case, then there
exist € > 0 and w € Q4 such that ||z(w) — z,|| > € for each n € N*. But
the inequalities above show that z(w) does not belong to the closure of
the set {z,; n € N*} which coincides with X. This contradiction can be
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eliminated only if (1.1.2) holds. Let us define now
n—1
Ef=Qf and E; =0\ for n=2,3,...
k=1

and let us observe that all the sets E;, are measurable and

|JE:=9: and E{nE; =0 for k#p.

n>1

Let z. : @ — X be defined by

fer] = zn, if weE],
TW=0 if we\Qy.

Obviously z. is countably-valued and ||z(w) — z.(w)|| < € for each w € Q.
The proof is complete. g

Remark 1.1.2. The definition of z. in the proof of Theorem 1.1.3 shows
that a function z : 0 — X is strongly measurable if and only if there exists
a sequence of countably-valued functions from €2 to X which is uniformly
p-a.e. convergent on {2 to z.

1.2. The Bochner Integral

As in the preceding section, let X be a real Banach space, (£2,%,u) a
o-finite and complete measure space and let z : 2 — X be a countably-
valued function. Then there exist {Q,; n € N} C ¥ and {z,; n € N} C X,
satisfying QxNQ, = 0 for each k # p, Q = Uy, and such that z(w) = z,
for each n € N and each w € Q,. Obviously, the two families {Q,; n € N}
and {z; n € N} which define a countably-valued function are not unique.
For this reason, in all that follows, a pair of sets ({Q,; n € N}, {zn; n € N})
enjoying the above properties is called a representation of the countably-
valued function z. Inasmuch as 2 has o-finite measure, each countably-
valued function z : Q@ — X admits at least one representation with the
property that, for each n € N, p(92,) < +o00. Such a representation is
called o-finite representation.

Definition 1.2.1. Let z : 2 — X be a countably-valued function and let
R = ({Qn; n € N}, {z,; n € N}) be one of its o-finite representations. We
say that R is Bochner integrable (B-integrable) on 2 with respect to p, if

0o
> () l|znll < +oo.
n=0
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Remark 1.2.1. If R and R’ are two o-finite representations of a countably-
valued function z : © — X, the series Y .- u(Qn)zpn and > 00 o u(,)z),
are either both convergent, or both divergent, in the norm topology of
X, and, in the former case, they have the same sum. Accordingly, R is B-
integrable on Q with respect to p if and only if R’ enjoys the same property.

This remark enables us to introduce:

Definition 1.2.2. The countably-valued function z : Q@ — X is Bochner
integrable on €} with respect to p if it has a o-finite representation

R = ({Qn; n € N}, {zp; n € N})

which is B-integrable on 2 with respect to u. In this case, the vector

g#(ﬂn)an/ﬂx(w)du(uJ) :/ﬂ:zd.p,

which does not depend on the choice of R (see Remark 1.2.1), is called the
Bochner integral on ) of the function z with respect to u.

Definition 1.2.3. A function z : Q@ — X is Bochner integrable on Q with
respect to p if it is strongly measurable and there exists a sequence of
countably-valued functions (zj)ren, Bochner integrable on © with respect
to u, such that

lim [ o) — zx(w)] du(w) =o0.

k—o00 0

Proposition 1.2.1. If £ : Q@ — X is Bochner integrable on Q with respect
to p and (zx)ken 1S a sequence with the properties in Definition 1.2.3, then
there ezists

lim [ zxdyp
k—o0 0

in the norm topology of X. In addition, if (yk)ken 1S another sequence of
countably-valued functions with the property that

lim /Q lo(w) — g ()| duw) =0,

k—o0

then
lim [ 2(w) du(w) = lim /ﬂ () dp(w).

k—oo Jo

Proof. Let ¢ > 0 and let k() € N be such that

/um—xknduy
Q



