NUCLEAR CARDIAC IMAGING

FOURTH EDITION

Principles and Applications

AMI E. ISKANDRIAN ERNEST V. GARCIA

NUCLEAR CARDIAC IMAGING PRINCIPLES AND APPLICATIONS

Fourth Edition

Edited by

AMI E. ISKANDRIAN

Distinguished Professor of Medicine and Radiology Section Chief, Nuclear Cardiology Division of Cardiovascular Disease University of Alabama at Birmingham

ERNEST V. GARCIA

Professor of Radiology Emory University School of Medicine Atlanta, Georgia

Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education.

Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2008 by Oxford University Press, Inc.

Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Nuclear cardiac imaging: principles & applications / edited by Ami E. Iskandrian, Ernest V. Garcia.—4th ed. p.; cm. Includes bibliographical references and index. ISBN-13: 978-0-19-531119-8
1. Heart—Radionuclide imaging. [DNLM: 1. Heart—radionuclide imaging. WG 141.5.R3 N963 2008]
I. Iskandrian, Ami E., 1941- II. Garcia, Ernest V. RC683.5.R33185 2008
616.1'207575—dc22 2007035543

To our wives, Greta P. Iskandrian and Terri Spiegel,

and to our children,
Basil, Susan, and Kristen Iskandrian and Meredith and Evan Garcia
and to their spouses and children.

Preface

You are probably thinking, "Who needs another book in nuclear cardiology?" After all, there are many excellent nuclear cardiology books written or edited by leaders in the field. This is the fourth edition of the book; the third edition was previously edited by Iskandrian and Verani and published in 2003. For the well-established, mature field of nuclear cardiology, what possible innovations or changes in clinical practice would warrant a new edition in just five years? The answers to these questions are exactly what motivated us to come out with this edition.

In keeping with the original objective of this book, we sought out to edit a volume that would be the most comprehensive and definitive source of detailed information in nuclear cardiology for years to come. Most of the 26 chapters from the third edition have been retained and updated with new technical and clinical information. To keep up with the significant progress in our field, 11 new chapters have been added. Some of the new topics include perfusion quantitation, PET/CT and SPECT/CT hybrid imaging, equilibrium SPECT MUGA, Rb-82 perfusion PET, image fusion, screening asymptomatic subjects, infarct sizing, artificial intelligence for decision support, and molecular imaging.

As in previous editions, we selected as contributors, as much as possible, the leaders in the specific topic of each chapter. We are both grateful and impressed by their contributions. As both of us read each and every word the authors wrote, we were impressed by how well-explained and detailed the chapters were and by how much new information we were discovering in each of these topics, even the ones we thought we had mastered. We are very grateful to our contributors because as authors ourselves, we realize how much time and effort it takes to produce such a high-quality contribution.

Our objective was also to produce a book that was easy to read and understand, both from the aesthetic and intellectual points of view. In this edition, for the first time, we are presenting most figures in color. We edited the chapters to be more consistent with each other in both form and function. We encouraged the authors, in addition to providing us with up-to-date information, to also indicate to the reader their honest appraisal of the status of each specific topic. This proved to be particularly useful in controversial and in fast-changing topics. Finally, in the last chapter, we provide straightforward answers to the most commonly asked questions regarding practical, technical, and clinical issues in nuclear cardiology.

This book validates the concept that the whole is greater than the sum of its parts. Although each chapter can be considered an excellent reference source for any specific topic, this book is not meant to be sitting on your shelf. We encourage neophytes and experts alike to read it cover to cover. We expect that you will get as much pleasure from reading it as we have in bringing it to you. As in any book with so many chapters and authors, some degree of repetition and controversy exist. We purposely have allowed that to give the readers different perspectives or even different viewpoints.

We are grateful to the staff of Oxford University Press and especially to the efforts of William Lamsback for advice and flexibility.

Contributors

OLAKUNLE O. AKINBOBOYE, M.D., MPH, MBA, FACC, FAHA, FASNC

Associate Professor of Medicine Associate Director, Division of Cardiology New York Hospital Queens, New York

Stephen L. Bacharach, Ph.D. Visiting Professor, Radiology Center for Molecular and Functional Imaging University of California, San Francisco

TIMOTHY M. BATEMAN, M.D. Cardiovascular Consultants, P.A. Mid-America Heart Institute University of Missouri—Kansas City

JEROEN J. BAX
Department of Cardiology
Leiden University Medical Center
Leiden, The Netherlands

Daniel S. Berman, M.D.
Professor of Medicine
David Geffen School of Medicine at UCLA
Director, Nuclear Cardiology/Cardiac Imaging
Cedars-Sinai Medical Center
Los Angeles, California

Jeffrey S. Borer, M.D.
Gladys and Roland Harriman Professor of
Cardiovascular Medicine
Chief, Cardiovascular Pathophysiology
Director, The Howard Gilman Institute for Valvular Heart
Diseases
Weill Cornell Medical College of Cornell University
New York-Presbyterian Hospital, New York
New York, New York

KENNETH A. BROWN, M.D., FACC
Professor of Medicine
Director, Cardiac Stress and Nuclear Cardiology
Laboratories
University of Vermont College of Medicine
Burlington, Vermont

JAMES A. CASE, PH.D. Director of Clinical Physics

Cardiovascular Imaging Technologies Kansas City, Missouri

MANUEL D. CERQUEIRA, M.D.
Professor of Radiology and Medicine
Cleveland Clinic Learner College of Medicine
Case Western Reserve University
Chairman, Department of Nuclear Medicine
Cleveland Clinic
Cleveland, Ohio

JI CHEN
Assistant Professor of Radiology
Department of Radiology
Emory University
Atlanta, Georgia

S. James Cullom, Ph.D. Director, Research and Development Cardiovascular Imaging Technologies Kansas City, Missouri

MICHAEL W. DAE Professor of Radiology and Medicine Department of Radiology University of California, San Francisco

SETH T. DAHLBERG, M.D.
Associate Professor of Medicine and Radiology
University of Massachusetts Medical School
University of Massachusetts Memorial
Medical Center
Director, Nuclear Medicine
UMass Memorial Medical Center
Worcester, Massachusetts

PIETER DE BONDT, M.D., PH.D Division of Nuclear Medicine OLV Hospital Aalst, Belgium

E. GORDON DEPUEY, M.D.
Director of Nuclear Medicine
Department of Radiology
St. Luke's-Roosevelt Hospital
Professor of Radiology
Columbia University College of Physicians and Surgeons
New York, New York

Marcelo F. Di Carli, M.D. Division of Nuclear Medicine/PET Brigham & Women's Hospital Boston, Massachusetts

TRACY L. FABER, Ph.D. Associate Professor of Radiology Emory University Atlanta, Georgia

James R. Galt, Ph.D. Assistant Professor of Radiology Emory University Atlanta, Georgia

ERNEST V. GARCIA, Ph.D., FAHA, FASNC Professor of Radiology Emory University School of Medicine Atlanta, Georgia

Guido Germano, Ph.D. Professor of Medicine UCLA School of Medicine Director, Artificial Intelligence Program Cedars-Sinai Medical Center Los Angeles, California

GARY V. HELLER, M.D., PH.D., FACC Professor of Medicine Associate Director, Division of Cardiology Director, Nuclear Cardiology Laboratory The Henry Low Heart Center Hartford Hospital Hartford, Connecticut

Maureen Henneman Department of Cardiology Leiden University Medical Center Leiden, The Netherlands

AMI E. ISKANDRIAN, M.D., MACC, FAHA, FASNC Distinguished Professor of Medicine and Radiology Section Chief, Nuclear Cardiology Division of Cardiovascular Disease University of Alabama at Birmingham

MASAYUKI INUBUSHI Department of Nuclear Medicine Hokkaido University Graduate School of Medicine Sapporo, Japan

YUJI KUGE Department of Nuclear Medicine Hokkaido University Graduate School of Medicine Sapporo, Japan JEFFREY A. LEPPO, M.D.
Professor of Radiology and Medicine
University of Massachusetts Medical School
Chief, Division of Cardiology
Berkshire Medical Center
Department of Medicine
Berkshire Medical Center
Pittsfield, Massachusetts

KIRKEITH LERTSBURAPA, M.D. Clinical Cardiology Fellow
The Henry Low Heart Center
Hartford Hospital
Hartford, Connecticut

ROBERTO MAASS-MORENO, PH.D. Staff Scientist Department of Nuclear Medicine National Institutes of Health Bethesda, Maryland

JOHN J. MAHMARIAN, M.D., FACC, FASNC Professor of Medicine
Department of Cardiology
Weill Cornell Medical College
Medical Director, Nuclear Cardiology and
CT Services
Methodist DeBakey Heart and Vascular Center
The Methodist Hospital
Houston, Texas

JENNIFER H. MIERES, M.D.
Associate Professor of Medicine
Director, Nuclear Cardiology
Division of Cardiology
New York University School of Medicine
New York, New York

PAUL H. MURPHY, Ph.D. Professor Department of Radiology Nuclear Medicine Section Baylor College of Medicine Houston, Texas

JAGAT NARULA, M.D., PH.D. Professor of Medicine Chief, Division of Cardiology Associate Dean, School of Medicine University of California, Irvine

Kenneth J. Nichols, Ph.D Senior Physicist, Division of Nuclear Medicine North Shore Long Island Jewish Health System Manhasset and New Hyde Park, New York DON POLDERMANS, MD Department of Cardiology Thorax Center Rotterdam The Netherlands

PAOLO RAGGI, M.D., FACC, FACP Professor of Medicine and Radiology Emory University School of Medicine Atlanta, Georgia

ZAKIR SAHUL, M.D., PH.D. Postdoctoral Fellow Section of Cardiology Department of Internal Medicine Yale University New Haven. Connecticut

HEINRICH R. SCHELBERT, M.D., PH.D. Department of Molecular and Medical Pharmacology David Geffen School of Medicine at UCLA Los Angeles, California

J. D. SCHUIJF Department of Cardiology Leiden University Medical Center The Netherlands

LESLEE J. SHAW, PH.D.

Professor of Medicine

Division of Cardiology

Emory Program in Cardiovascular Outcomes Research

and Epidemiology

Emory University School of Medicine

Atlanta, Georgia

Arend F. L. Schinkel, M.D. Department of Cardiology Thorax Center Rotterdam The Netherlands

ALBERT J. SINUSAS, M.D., FACC, FAHA
Professor of Medicine and Diagnostic Radiology
Yale University School of Medicine
Nuclear Cardiology, 3FMP
New Haven, Connecticut

PREM SOMAN, M.D., PH.D., FRCP (UK) Assistant Professor of Medicine Division of Cardiology University of Pittsburgh Medical Center Pittsburgh, Pennsylvania

PHYLLIS G. SUPINO, Ed.D.

Associate Research Professor of Public Health in Medicine

Associate Research Professor of Public Health Weill Cornell Medical College of Cornell University New York, New York

RAYMOND TAILLEFER
Professor of Nuclear Medicine
Department of Radiology
University of Montréal
Director of Nuclear Medicine
University of Montreal Hospital Center
Montréal, Canada

NAGARA TAMAKI Department of Nuclear Medicine Hokkaido University Graduate School of Medicine Sapporo, Japan

James E. Udelson, M.D.
Acting Chief, Division of Cardiology
Tufts Medical Center
Associate Professor of Medicine and Radiology
Tufts University School of Medicine
Boston, Massachusetts

Frans J. Th. Wackers, M.D., Ph.D.
Professor Emeritus of Diagnostic Radiology and Medicine
Senior Research Scientist
Section of Cardiovascular Medicine
Yale University School of Medicine
New Haven, Connecticut

ERNST VAN DER WALL, M.D., PH.D. Department of Cardiology Leiden University Medical Center Leiden, The Netherlands

DENNY D. WATSON, Ph.D. Professor of Radiology University of Virginia Health System Charlottesville, Virginia

KIM ALLAN WILLIAMS M.D., FASNC, FACC, FABC, FAHA

Professor of Medicine and Radiology Sections of Cardiology and Nuclear Medicine Director of Nuclear Cardiology University of Chicago Chicago, Illinois

Joseph C. Wu, M.D., Ph.D.
Assistant Professor
Stanford University School of Medicine
Department of Medicine (Division of Cardiology) and
Department of Radiology (Division of Nuclear Medicine)
Stanford, California

xvi

CONTRIBUTORS

BARRY L. ZARET, M.D. Robert W. Berliner Professor of Medicine Yale University School of Medicine Department of Internal Medicine Section of Cardiovascular Medicine New Haven, Connecticut GILBERT ZOGHBI, M.D., FACC Assistant Professor of Medicine Division of Cardiovascular Disease University of Alabama at Birmingham

Contents

Preface Contributors	vii xiii
1. A Brief Historical Perspective on Nuclear Cardiology Barry L. Zaret	3
2. Radiation Physics and Radiation Safety Paul H. Murphy	10
3. Imaging Instrumentation Roberto Maass-Moreno and Stephen L. Bacharach	31
4. Kinetics of Myocardial Perfusion SPECT Imaging Radiotracers Raymond Taillefer	59
 Acquisition, Processing, and Quantification of Nuclear Cardiac Images Denny D. Watson 	83
6. Quantification of SPECT Myocardial Perfusion Images Frans J. Th. Wackers	102
7. Image Artifacts E. Gordon DePuey	117
8. Myocardial Perfusion Single-Photon Emission Computed Tomography Attenuation Co. James A. Case, S. James Cullom, and Timothy M. Bateman	rrection 147
9. Gated SPECT Guido Germano and Daniel S. Berman	161
 Gated Blood Pool SPECT Kenneth J. Nichols, Pieter De Bondt, and Olakunle O. Akinboboye 	184
11. SPECT/CT and PET/CT Hybrid Imaging and Image Fusion Tracy L. Faber and James R. Galt	202
12. Phase Analysis in Resynchronization Therapy: Old and New Ji Chen, Ernest V. Garcia, Ami E. Iskandrian, Maureen Henneman, and Jeroen J. Bax	218
13. Infarct Sizing Kirkeith Lertsburapa and Gary V. Heller	230
14. Treadmill Exercise Testing Gilbert J. Zoghbi and Ami E. Iskandrian	241
15. Exercise Myocardial Perfusion Imaging Gilbert J. Zoghbi and Ami E. Iskandrian	267
16. Pharmacological Stress Testing Gilbert I. Zoghbi and Ami E. Iskandrian	293

17.	Risk Assessment in CAD: Suspected CAD/Known Stable CAD Kenneth A. Brown	316
18.	Risk Assessment in Acute Coronary Syndromes John J. Mahmarian	339
19.	Risk Assessment before Noncardiac Surgery Seth T. Dahlberg and Jeffrey A. Leppo	385
20.	Use of Nuclear Techniques in the Assessment of Patients before and after Cardiac Revascularization Procedures Timothy M. Bateman	397
21.	Accuracy of Cardiovascular Imaging for the Assessment of Cardiac Symptoms in Women Leslee J. Shaw and Jennifer H. Mieres	417
22.	Imaging Patients with Chest Pain in the Emergency Department Prem Soman and James E. Udelson	430
23.	Imaging Left Ventricular Remodeling Zakir Sahul and Albert Sinusas	445
24.	Iodinated Fatty Acid Imaging Nagara Tamaki, Yuji Kuge, and Masayuki Inubushi	462
25.	Imaging Myocardial Innervation Michael W. Dae	477
26.	First-Pass Radionuclide Angiography Kim Allan Williams	485
27.	Radionuclide Angiography: Equilibrium Imaging Jeffrey S. Borer and Phyllis G. Supino	515
28.	Positron Emission Tomography Heinrich R. Schelbert	541
29.	Cardiac PET Imaging without an On-Site Medical Cyclotron Marcelo F. Di Carli	559
30.	Myocardial Viability/Hibernation Arend F. L. Schinkel, Don Poldermans, Ernst E. van der Wall, and Jeroen J. Bax	573
31.	Cardiovascular Molecular Imaging: Current Progress and Future Prospects Joseph C. Wu and Jagat Narula	590
32.	Noninvasive Imaging Techniques in the Detection and Prognostication of Coronary Artery Disease J. D. Schuiff, E. E. Van der Wall, and J. J. Bax	609
33.	Cost-Effectiveness of Myocardial Perfusion SPECT Compared to Other Diagnostic Testing Modalities Leslee J. Shaw	621
34.	Screening of Asymptomatic Patients Gilbert J. Zoghbi and Ami E. Iskandrian	631
35.	Artificial Intelligence Methods in Nuclear Cardiology Ernest V. Garcia and Tracy L. Faber	661

36.	Quality Practical Nuclear Cardiology: Appropriateness, Training, Physician Certification, Laboratory Accreditation, and Reporting Manuel D. Cerqueira	674
37.	Cardiac Computed Tomography for the Nuclear Cardiology Specialist Paolo Raggi	688
38.	Practical Issues: Ask the Experts Ami E. Iskandrian and Ernest V. Garcia	703
Inde	ex	719

CONTENTS

xi

Nuclear cardiac imaging

A brief historical perspective on nuclear cardiology

BARRY L. ZARET

Nuclear cardiology is generally considered a clinical phenomenon of the past three decades. However, the field has its roots in earlier times. This chapter focuses on these historical roots as they have evolved into the present era. Space constraints mandate focusing solely on the highlights. My apologies to the many highly productive investigators and laboratories whose contributions helped the field grow to its current level but who could not be included.

HEART FUNCTION AND CIRCULATORY DYNAMICS

The initial application of radioisotopes to the study of the circulation occurred in the mid-1920s (Table 1.1). The famous cardiologic investigator of that era, Hermann Blumgart, in an elegant series of studies employing radon gas dissolved in saline as the radionuclide marker and a modified Wilson cloud chamber as the radiation detector, measured central circulation transit times in humans [1]. These studies, which were well ahead of their time, resulted in substantial improvement in the general understanding of cardiovascular function in a variety of disease states. They were early forerunners of the studies of the 1950s and 1960s, in which substantial attention was given to hemodynamic characterization in both health and human disease states. Blumgart's laboratory in Boston also served as fertile ground for training the next generation of cardiovascular investigators.

Not until the 1940s did Myron Prinzmetal build on this concept for potential clinical use, employing a simple sodium iodide probe to record transit of radiolabeled albumin through the central circulation. Prinzmetal, a practicing cardiologist, made important clinical observations using nonimaging Geiger tubes and scintillation detectors in a procedure called "radiocardiography" to define cardiac output, pulmonary blood volume, and pulmonary transit time [2].

However, the major impetus for the development of nuclear medicine technology occurred when Hal O. Anger, working in Berkeley, California, developed the first practical widely used high-resolution dynamic imaging device, the gamma (Anger) camera [3]. With this device, early pioneers in the field (such as Joseph Kriss) demonstrated the ability to visualize cardiac structures from rapid sequential radionuclide images following injection of a bolus of technetium-99m (Tc-99m)-labeled radioactive tracers [4,5]. From these serial images, a number of inferences could be made concerning cardiac pathophysiology and cardiac chamber and great vessel size. Following these qualitative studies, quantitative techniques were developed for assessing left and right ventricular ejection fraction as well as the degree of left:right intracardiac shunting [6,7]. For over a decade, first-pass approaches to ejection fraction were widely used. Extensive studies were subsequently performed by many laboratories, particularly at Duke and Yale Universities, establishing efficacy and clinical utility [8-11].

In 1971, the principle of electrocardiographic gating of the stable labeled (equilibrium) blood pool to evaluate cardiac performance was first proposed by Zaret and Strauss [12,13] (Table 1.2). This forerunner of current equilibrium radionuclide angiocardiography (ERNA) required separate manual gating of end-systole and enddiastole for subsequent measurement of left ventricular ejection fraction and assessment of regional function. This was a cumbersome and time-consuming procedure. However, once efficacy had been established, it was only a short time before automation of this technique occurred; using relatively simple computerized techniques, the entire cardiac cycle could be visualized in an endless loop display with automated calculation of ejection fraction and visualization of the entire ventricle volume curve. For over a decade, this technique was the standard for measuring ventricular function noninvasively. In 1977, Borer and colleagues at the National

TABLE 1.1 Major Advances: Before 1970

Decade	Investigator	Advance
1920s	H Blumgart	Circulation times with radioisotopes
1940s	M Prinzmetal	Radiocardiography
1960s	EA Carr	Perfusion imaging in experimental MI
	EA Carr	Hot spot imaging in experimental MI
	HO Anger	Development of scintillation camera
	J Kriss	Quantitative FPRNA

FPRNA = First-pass radionuclide angiocardiography. MI = Myocardial infarction.

Institutes of Health first reported combining ERNA with exercise to evaluate regional and global LV function under stress conditions in coronary artery disease as well as other disease states, such as valvular heart disease [14]. In large part, echocardiography has superseded ERNA in this context. However, for precise serial measurements of ejection fraction, such as in the situation involving monitoring cardiotoxicity in patients receiving chemotherapy, the radionuclide technique remains the procedure of choice [15].

Newer evolutionary advances in ventricular function assessment involve single-photon emission computed tomography (SPECT) studies of the cardiac blood pool. This allows a more comprehensive assessment of right and left ventricular regional function [16]. Presently, with the marked advances in gated SPECT perfusion studies, ventricular function is often evaluated concomitantly with assessment of myocardial perfusion, and this has frequently obviated the need for separate studies [17].

MYOCARDIAL PERFUSION IMAGING

In the early 1960s, Carr, in a pioneering set of experiments, demonstrated the localization of radioactive potassium and other radioactive potassium analogs, such as cesium and rubidium, in the myocardium of experimental animals [18]. He also demonstrated that under conditions of acute coronary ligation, there was a decreased accumulation of these radioactive tracers in the evolving infarct zone. However, it was not until 1973 that the ability to image the site and extent of myocardial ischemia was demonstrated by combining physiological stress with static cardiac imaging (Table 1.2). In these initial studies, performed directly in humans, Zaret, Strauss, and colleagues, working in Travis Air Force Base in California, established the paradigm of imaging

ischemia induced by treadmill exercise stress, utilizing potassium-43 (K-43) as the tracer and the rectilinear scanner as the imaging device [19]. This relatively simple observation formed the clinical and physiological basis of nuclear cardiology and stress imaging as practiced today. These investigators were able to demonstrate a pattern of relatively decreased perfusion in an ischemic area only under conditions of stress, with homogeneous radioactive tracer uptake under resting conditions. The kinetics of K-43 mandated separate injections for rest and stress studies. The authors were also able to establish direct relationships between perfusion patterns and coronary stenosis as demonstrated by coronary angiography. Following the initial demonstration, subsequent clinical studies demonstrated the utility of this approach, again using K-43 and the rectilinear scanner, in assessing the patency of bypass grafts following cardiac surgery [20] and the presence of false positive exercise tests [21]. These studies, which set the stage for the rapid development of the field, clearly employed a suboptimal radioactive tracer in the form of K-43. Its high-energy spectrum, which was not a problem for the rectilinear scanner, was a significant problem for the gamma camera. Of note, this same group, in the early 1970s, demonstrated that with appropriate pinhole collimation and shielding, one could obtain acceptable planar cardiac images using these high-energy, positronemitting agents and a conventional gamma camera [22]. This study was a forerunner of current hybrid gamma camera technologies.

Thereafter Lebowitz et al. introduced thallium-201 (Tl-201) for imaging [23]. The ease of using the lowerenergy Tl-201 with the gamma camera heralded a major breakthrough in the development of nuclear cardiology as a clinically viable discipline. In 1975, Pohost and colleagues defined the phenomenon of redistribution on thallium imaging [24]. This allowed the use of a single radionuclide injection and sequential imaging to assess transient ischemia or heterogeneity of blood flow that was normalized in a subsequent resting state several hours later. In the late 1970s, Gould, who had already made important contributions to understanding the pathophysiologic basis of perfusion imaging, developed the concept of detection of heterogeneity of coronary perfusion in the presence of stenosis by using vasodilator pharmacological stress as opposed to exercise stress [25]. This was first performed with dipyridamole. Thereafter it became apparent that more optimal studies could be obtained by using adenosine directly. More recently, attention has turned to more specific adenosine receptor agonists, with focus on the adenosine A2a receptor [26]. For patients who could not tolerate adenosine because of bronchospastic disease, dobutamine was introduced as a stressor, comparable to its use in stress echocardiography [27]. These advances established the utility of the field of perfusion imaging for individuals incapable of exercising. In the same decade, Wackers et al., in Amsterdam, demonstrated the potential utility of thallium imaging for detecting acute infarction [28]. This study was a forerunner to current imaging approaches in the emergency department setting.

The late 1980s and 1990s saw the development of technetium-99m (Tc-99m) perfusion agents as important new radiopharmaceuticals for identifying ischemia and infarction. The initial two agents were Tc-99m-labeled sestamibi and teboroxime [29,30]. Whereas sestamibi has survived and remains a major clinical tracer today, teboroxime is no longer employed. The reason resides in the very rapid transit of teboroxime from the myocardium. Consequently, for purposes of imaging ischemia clinically, it remains a suboptimal

agent. In the mid-1990s, tetrofosmin became available as an alternative to sestamibi for perfusion imaging [31]. The Tc-labeled perfusion agents have provided a more optimal situation for tomographic imaging employing SPECT. The more efficient energy spectrum and ability to use higher doses have led to substantial improvement in resolution. However, it must be noted that the optimal perfusion imaging agent has not been defined as yet. Such an agent would, while using Tc-99m as the radionuclide, provide better myocardial uptake and kinetic characteristics and not have excessive subdiaphragmatic tracer accumulation.

More recently, positron emission tomography (PET) perfusion studies using rubidium-82 generators and pharmacological stress have received increasing attention. These studies allow direct quantification of blood flow, provide high-resolution studies, and are well suited for markedly obese patients [32].

TABLE 1.2 Major Advances: After 1970

Date	Investigators	Advance
1971	B Zaret, HW Strauss	ECG gating of cardiac blood pool in humans (ERNA) for LVEF and regional wall motion abnormality
1973	B Zaret, HW Strauss	Exercise perfusion imaging (K-43) in humans
1970s–1980s	Multiple	Quantitative FPRNA for LVEF, RVEF
1973	E Lebowitz	Development of Tl-201
1974	R Parkey, J Willerson	Hot spot imaging of acute F Bonte MI with Tc-PYP
1976	F Wackers	Imaging acute MI with Tl-201
1976	B Khaw, E Haber	Antibody imaging of acute MI
1977	J Borer	Exercise ERNA
1977	G Pohost	Tl-201 redistribution
1978	KL Gould	Pharmacological stress imaging
1980s-1990s	Multiple	Development of Tc perfusion agents
1980s–1990s	Multiple	Development of SPECT
1986	J Tillisch, H Schelbert	PET viability
1980s–1990s	Multiple	SPECT viability
1990s and after	Multiple, in particular GA Beller, D Berman, R Hachomovitch, A Iskandrian	Studies of prognosis with nuclear cardiology
1990s	Multiple	Development of attenuation correction
1995	J Narula, B Khaw	Vascular plaque imaging
1998	H Blankenberg, HW Strauss	Imaging apoptosis in vivo
2000 and beyond	Multiple	Development of molecular imaging
2000 and beyond	Multiple	Development of hybrid imaging systems
2000 and beyond	Multiple	Development of microSPECT and PET system

ERNA = Equilibrium radionuclide angiocardiography.

FPRNA = First-pass radionuclide angiocardiography.

MI = Myocardial infarction.

PYP = Pyrophosphate.