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Preface

The book divides naturally into several parts according to the level of the
material, the background required of the reader, and the style of presentation
with respect to details of proofs. For example, the first part, to Chapter 6, is
undergraduate in level, the second part requires a background in Galois
theory and the third some complex analysis, while the last parts, from Chapter
12 on, are mostly at graduate level. A general outline of much of the material
can be found in Tate’s colloquium lectures reproduced as an article in Inven-
tiones [1974].

The first part grew out of Tate’s 1961 Haverford Philips Lectures as an
attempt to write something for publication closely related to the original Tate
notes which were more or less taken from the tape recording of the lectures
themselves. This includes parts of the Introduction and the first six chapters.
The aim of this part is to prove, by elementary methods, the Mordell theorem
on the finite generation of the rational points on elliptic curves defined over
the rational numbers.

In 1970 Tate returned to Haverford to give again, in revised form, the
original lectures of 1961 and to extend the material so that it would be suitable
for publication. This led to a broader plan for the book.

The second part, consisting of Chapters 7 and 8, recasts the arguments used
in the proof of the Mordell theorem into the context of Galois cohomology
and descent theory. The background material in Galois theory that is required
is surveyed at the beginning of Chapter 7 for the convenience of the reader.

The third part, consisting of Chapters 9, 10, and 11, is on analytic theory.
A background in complex analysis is assumed and in Chapter 10 elementary
results on p-adic fields, some of which were introduced in Chapter 5, are used
in our discussion of Tate’s theory of p-adic theta functions. This section is
based on Tate’s 1972 Haverford Philips Lectures.



viii Preface

The fourth part, namely Chapters 12, 13, and 14, covers that part of
algebraic theory which uses algebraic geometry seriously. This is the theory
of endomorphisms and elliptic curves over finite and local fields. While earlier
chapters treated an elliptic curve as a curve defined by a cubic equation, here
the theory of endomorphisms requires a more subtle approach with varieties
and, for some questions of bad reduction, schemes. This part is very carefully
covered in the book by Silverman [1985], and thus we frequently do not give
detailed arguments. We recommend this book as a reference while reading
this part.

The fifth part, consisting of Chapters 15, 16, and 17, surveys recent results
in the arithmetic theory of elliptic curves. Here again few proofs are given, but
various elementary background results are included for the beginner reader
in order to make the main references more accessible. The three chapters
include part of Serre’s theory of Galois representations including a result
of Falting’s which played an important role in the proof of the Mordell
conjecture, L-functions of elliptic curves over a number field, the special
case of complex multiplication, modular curves, and finally the Birch and
Swinnerton-Dyer conjecture. There is a progress discussion on the Birch
and Swinnerton-Dyer conjecture describing the contributions of Coates and
Wiles, of Greenberg, and of Gross and Zagier. We also mention the work of
Goldfeld which reduced the effective lower bound question of Gauss for the
class number of imaginary quadratic fields to a special case of the conjectural
framework of Birch and Swinnerton-Dyer contained in the work of Gross and
Zagier.

Finally the book concludes with an appendix by Ruth Lawrence. She did
all the hundred or so exercises in the book, and from this extensive work the
idea of an appendix evolved. It consists of comments on all the exercises
including complete solutions for a representative number. Usually there are
just answers or hints on how to proceed together with remarks on the level
of difficulty. This appendix should be a great help for the reader starting the
subject and wishing to do some of the exercises.
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Introduction to Rational Points on
Plane Curves

This introduction is designed to bring up some of the main issues of the book
in an informal way so that the reader with only a minimal background in
mathematics can get an idea of the character and dlrectlon of the subject

An elliptic curve, viewed as a plane curve, is given by a nonsmgular ‘cubic
equation. We wish to point out what is special about the class of elliptic curves
among all plane curves from the point of view of arithmetic. In the process
the geometry of the curve also enters the picture.

For the first considerations our plane curves are defined by a polynomial
equation in two variables f(x, y) = 0 with rational coefficients. The main
invariant of this f is its degree, a natural number. In terms of plane analytic
geometry there is a locus C;, of this equation in the x, y-plane where the
definition is that the point (x, y) is on the locus C, provided it satisfies the
equation f(x, y) = 0 as real numbers. To emphasize that the locus consists of
points with real coordinates (so is in R?), we denote this real locus by C/(R)
and consider C/(R) = RZ.

Since some curves C,, like for example f(x,y) = x> + y* + 1, have an
empty real locus C.(R), it is always useful to work also with the complex locus
C,(C) contained in C* even though it cannot be completely pictured geometri-
cally.This is especially true for geometric considerations involving the curve.

For arithmetic the locus of special interest is the set C,(Q) of rational points
(x, y) e Q? satisfying f(x, y) = 0, that is, points whose coordinates are rational
numbers. The fundamental problem is the description of this set C,(Q). An
elementary question is whether or not C,(Q) is finite or even empty.

The problem is attacked by a combination of geometric and arithmetic
arguments using the inclusions C,(Q) = C(R) = C/(C). Alocus C,(Q)is either
compared with another locus C,(Q), which is better understood, as we illus-
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)

trate for lines where deg(f) = | and conics where deg(f) = 2 or by interna
operations which is the case for elliptic curves.

In terms of the real locus, curves of degree 1, degree 2, and degree 3 can be
pictured respectively as follows.

§1. Rational Lines in the Projective Plane

Plane curves C, can be defined for any nonconstant complex polynomial
f(x, y)eC[x, y] by the equation f(x, y) = 0. For a nonzero constant k the
equations f(x, y) =0 and kf(x, y) = 0 have the same solutions and define
the same plane curve C, = C,,. When f has complex coefficients, there is
only a complex locus defined. If f has real coefficients or if f differs from
a real polynomial by a nonzero constant, then there is also a real locus with
C;(R) = C4(C). Such curves are called real curves.

(1.1) Definition. A rational plane curve is one of the form C, where f(x, y) is
a polynomial with rational coefficients.

In the case of a rational plane curve C, we have rational, real, and complex
points C,(Q) = C,(R) = C,(C) or loci.

A polynomial of degree 1 has the form f(x, y) = a + bx + cy. Assume the
coefficients are rational numbers and we begin by describing the set C(Q).
For ¢ nonzero we can set up a bijective correspondence between rational
points on the line C; and on the x-axis using intersections with vertical lines.

(x. —(l/e)a+bx))

(x, 0)

The rational point (x, 0) on the x-axis corresponds to the rational point
(x, — (1/c)(a + bx)) on C,. When b is nonzero, the line C,(Q) can be put in
bijective correspondence with the rational points on the y-axis using inter-
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sections with horizontal lines. Observe that the vertical or horizontal lines
relating rational points are themselves rational lines.

Instead of using parallel lines to relate points on two lines L = C, and
L' = C;., we can use a point Py = (xo, yo) not on either L or L' and relate
points using the family of all lines through P,. The pair P on L and P’ on L
correspond when P, P, and P, are all on a line.

If L and L’ are rational lines, and if P, is a rational point, then for two
corresponding points P on L and P’ on L’ the point P is rational if and only
if P’ is rational, and this defines a bijection between C,(Q) and C..(Q).

Observe that there are special cases of lines through P,, i.e., those parallel
to L or L', which as matters stand do not give a corresponding pair of points
between L and L'. This is related to the fact that the two types of correspon-
dence with parallel lines and lines through a point are really the same when
viewed in terms of the projective plane, for parallel lines intersect at a point
on the “line at infinity.” The projective plane is the ordinary Cartesian or affine
plane together with an additional line called the line at infinity.

(1.2) Definition. The projective plane P, is the set of all triples w:x:y, where
w, x, and y are not all zero and the points w:x:y = w':x":y’ provided there
is a nonzero constant k with

w' = kw, x" = kx, y' = ky.
As with the affine plane and plane curves we have three basic cases
P,(Q) = P,(R) = P,(C)

consisting of triples proportional to w:x:y, where x, y, we Q for P,(Q), where
x, y, ze R for P,(R), and where x, y, ze C for P,(C).

(1.3) Remarks. A line C in P, is the locus of all w: x: y satisfying the equation
F(w, x, y) = aw + bx + ¢y = 0. The line at infinity L, is given by the equation
w = 0. A pointin P, — L has the form 1:x: y after multiplying with the factor
w™!. The point 1:x:y in the projective plane corresponds to (x, y) in the usual
Cartesian plane. For a line L given by aw + bx + cy = 0 and L’ given by
aw+b'x+c¢'y=0 we have L =L’ if and only if a:b:c = a’:b’:c’ in the
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projective plane. In particular the points a:h:c in the projective plane ca
be used to parametrize the lines in the projective plane.

From the theory of elimination of variables in beginning algebra we hav
the following geometric assertions of projective geometry whose verificatio
is left to the reader.

(1.4) Assertion. Two distinct points P and P’ in P,(C) lie on a unique line |
in the projective plane, and, further, if P and P’ are rational points, then th
line L is rational. Two distinct lines L and L’ in P,(C) intersect at a uniqu
point P, and, further, if L and L’ are rational lines. then the intersection poin
P is rational.

The projective line L with equation L:aw + by + ¢y = 0 determines th
line a + bx + ¢y = 0 in the Cartesian plane. Two projective lines L: aw +
bx + cy=0and L": a’w + b'x + ¢’y = Ointersect on the line at infinity w = |
if and only if b:c = b": ¢/, that is, the pairs (b, ¢) and (b’ ¢’) are proportiona
The corresponding lines in the x,y-plane given by

a+bx+cy=0 and a' +b'x+c'y=0

have the same slope or are parallel exactly when the projective lines intersec
atinfinity. Now the reader is invited to reconsider the correspondence betweei
rational points on two rational lines L and L’ which arises by intersecting 1
and L’ with all rational lines through a fixed point P, not on either L or L.

To define plane curves in projective space, we use nonzero homogeneou
polynomials F(w, x, y)€ C[w, x, y]. Then we have the relation F(gw, gx, qy) =
q*F(w, x, y), where ge C and d is the degree of the homogenous polynomia
F(w, x, y). The locus Cy is the set of all w:x:y in the projective plane such tha
F(w, x, y) = 0. Again the complex points of C;. are denoted by Cr(C) = P,(C
and, moreover, Cr(C) = C.(C) if and only if F(w, x, y) and F'(w, x, y) ar
proportional with a nonzero complex number. This assertion is not com
pletely evident and is taken up again in Chapter 2.

(1.5) Definition. A rational (resp. real) plane curve in P, is one of the form C
where F(w, x, y) has rational (resp. real) coefficients.

As in the x.y-plane for a rational plane curve C,.. we have rational, real
and complex points C(Q) = Cr(R) = Cp(C).

(1.6) Remark. The above definition of a rational plane curve is an arithmeti
notion, and it means the curve is defined over Q. There is a geometric concep
of rational curve (genus = 0) which should not be confused with (1.5). Geo
metric rationality is defined in terms of the equation of the curve f(x, y) = (
over k and the field of fractions of k[x, v]/(f).



