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TEN CHAPTERS IN TURBULENCE

Turbulence is ubiquitous in science, technology and daily life and yet, despite years
of research, our understanding of its fundamental nature is tentative and incomplete.
More generally, the tools required for a deep understanding of strongly interacting
many-body systems remain underdeveloped.

Inspired by a research programme held at the Newton Institute in Cambridge,
this book contains reviews by leading experts that summarize our current under-
standing of the nature of turbulence from theoretical, experimental, observational
and computational points of view. The articles cover a wide range of topics, includ-
ing the scaling and organized motion in wall turbulence; small scale structure;
dynamics and statistics of homogeneous turbulence, turbulent transport and mix-
ing; and effects of rotation, stratification and magnetohydrodynamics, as well as
superfluid turbulence.

The book will be useful to researchers and graduate students interested in the
fundamental nature of turbulence at high Reynolds numbers.

PETER A. DAVIDSON is a Professor in the Department of Engineering at the
University of Cambridge.

YUKIO KANEDA is now an Emeritus Professor at Nagoya University and currently
a Professor at Aichi Institute of Technology, Japan.

KATEPALLI R. SREENIVASAN is a Professor in the Department of Physics and
in the Courant Institute for Mathematical Sciences at New York University.
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Preface

Vorticity fields that are not overly damped develop extremely complex spa-
tial structures exhibiting a wide range of scales. These structures wax and
wane in coherence; some are intense and most of them weak; and they in-
teract nonlinearly. Their evolution is strongly influenced by the presence of
boundaries, shear, rotation, stratification and magnetic fields. We label the
multitude of phenomena associated with these fields as turbulence' and the
challenge of predicting the statistical behaviour of such flows has engaged
some of the finest minds in twentieth century science.

The progress has been famously slow. This slowness is in part because
of the bewildering variety of turbulent flows, from the ideal laboratory cre-
ations on a small scale to heterogeneous flows on the dazzling scale of cosmos.
Philip Saffman (Structure and Mechanisms of Turbulence II, Lecture Notes
in Physics 76, Springer, 1978, p. 273) commented: “... we should not alto-
gether neglect the possibility that there is no such thing as ‘turbulence’. That
is to say, it is not meaningful to talk about the properties of a turbulent flow
independently of the physical situation in which it arises. In searching for a
theory of turbulence, perhaps we are looking for a chimera ... Perhaps there
is no ‘real turbulence problem’, but a large number of turbulent flows and
our problem is the self-imposed and possibly impossible task of fitting many
phenomena into the Procrustean bed of a universal turbulence theory.”?

More than forty years have passed since Steven Orszag (J. Fluid Mech.
41, 363, 1970) made the whimsical comment, as if with an air of resignation:
“It must be admitted that the principal result of fifty years of turbulence
research is the recognition of the profound difficulties of the subject”. The
hope he expressed that “This is not meant to imply that a fully satisfactory
theory is beyond hope”, appearing almost as an afterthought in his paper,
is still unrealized but progress has been made. In recent years one of the
driving forces behind this progress has been the ever increasing power of
computer simulations.®> These simulations, in conjunction with ever more
ambitious laboratory and field experiments, have helped us understand the

! We will not use the term here in its more general connotation of complex behaviour in an array
of many-dimensional systems.
2 Saffman was merely pointing out that he was open to this multiplicity, not declaring that
research in turbulence is tantamount to taxonomy.
3 The progress in numerical simulations of turbulence is a tribute to Orszag’s untiring efforts.
Sadly, he passed away during the preparation of this book.
ix
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role of organised motion in near-wall turbulence, and the structure and dy-
namics of small scales in statistically homogeneous turbulence and other
turbulent flows. Together, experiments and simulations have enhanced our
understanding of turbulent mixing and dispersion, allowing us to probe the
validity and refinement of many classical scaling predictions, and have suc-
cessfully complemented each other. In strongly stratified turbulence, for ex-
ample, we have learnt that we are not free to prescribe the vertical Froude
number; rather, nature dictates that it is of order unity. This understanding
has been crucial to developing a self-consistent scaling theory of stratified
turbulence. Similarly, in rapidly rotating turbulence, simulations have sup-
plemented laboratory experiments and there is now a vigorous debate as to
what precise role is played by inertial waves in forming the long-lived colum-
nar vortices evident in both simulations and experiments. Yet another area in
which simulations and experiments have admirably supplemented each other
is turbulence in superfluids, which displays some of the same macroscopic
phenomena as classical turbulence even though the microscopic physics in
the two instances is quite different.

This book was conceived during an Isaac Newton programme on turbu-
lence held in Cambridge in the Fall of 2008, and in particular after the
workshop on Inertial-Range Dynamics and Mizing organised by the editors.
The chapters, which take the form of reviews, are written by leading experts
in the field and should appeal to specialists and non-specialists alike. They
cover topics from small-scale turbulence in velocity and passive scalar fields
to organized motion in wall flows, from dispersion and mixing to quantum
turbulence as well as rotating, stratified and magnetic flows. They reflect the
breadth, the nature and the features of turbulence already mentioned. The
chapters progress from the those dealing with more general issues, such as
homogeneous turbulence and passive scalars through to wall flows, ending
with chapters dealing with stratification, rapidly rotating flows, the effect
of electromagnetic fields and quantum turbulence. Each is intended to be a
comprehensive account of lasting value that will help to open up new lines
of enquiry. Yet, the title of the book conforms to the pragmatic style of the
articles, rather than to a grand vision which promises more than it delivers.

The editors wish to thank the director and staff of the Isaac Newton
Institute for their constant support during the 2008 turbulence programme,
and Peter Bartello, David Dritschel and Rich Kerswell who co-organised
the programme with great enthusiasm. They wish to thank CUP for the
professionalism in preparing the book, and all the authors for their hard

work and patience.
Peter Davidson

Yukio Kaneda
Katepalli Sreenivasan
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1

Small-Scale Statistics and Structure of Turbulence —
in the Light of High Resolution Direct Numerical
Simulation
Yukio Kaneda and Koji Morishita

1.1 Introduction

Fully developed turbulence is a phenomenon involving huge numbers of de-
grees of dynamical freedom. The motions of a turbulent fluid are sensitive
to small differences in flow conditions, so though the latter are seemingly
identical they may give rise to large differences in the motions.! It is difficult
to predict them in full detail.

This difficulty is similar, in a sense, to the one we face in treating systems
consisting of an Avogadro number of molecules, in which it is impossible to
predict the motions of them all. It is known, however, that certain relations,
such as the ideal gas laws, between a few number of variables such as pres-
sure, volume, and temperature are insensitive to differences in the motions,
shapes, collision processes, etc. of the molecules.

Given this, it is natural to ask whether there is any such relation in tur-
bulence. In this regard, we recall that fluid motion is determined by flow
conditions, such as boundary conditions and forcing. It is unlikely that the
motion would be insensitive to the difference in these conditions, especially
at large scales. It is also tempting, however, to assume that, in the statistics
at sufficiently small scales in fully developed turbulence at sufficiently high
Reynolds number, and away from the flow boundaries, there exist certain
kinds of relation which are universal in the sense that they are insensitive
to the detail of large-scale flow conditions. In fact, this idea underlies Kol-
mogorov’s theory (Kolmogorov, 1941a, hereafter referred as K41), and has
been at the heart of many modern studies of turbulence. Hereafter, univer-
sality in this sense is referred to as universality in the sense of K41.

Although most of the energy in turbulence resides at large scales, most of
* This work was undertaken while both authors were at Nagoya University.

' This does not prevent satisfactory averages being measured, at least those belonging to small
scales.
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the degrees of dynamical freedom resides in the small scales. In Fourier space,
for example, most of the Fourier modes are in the high-wavenumber range.
Hence properly understanding the nature of turbulence at small scales is
interesting, not only from the theoretical, but also from the practical point
of view, because such an understanding can be expected to be useful for
developing models of turbulence to properly reduce the degrees of freedom
to be treated.

This chapter will review studies of the nature of turbulence at small scales.
Of course, more intensive studies have been performed on this interesting
subject than we can cover here; in addition, we cannot review all of the
issues related to each study that we do cover. We present a review of a
few topics in the light of recent progress in high resolution direct numerical
simulation (DNS) of turbulence. An analysis is also made on elongated local
eddy structure and statistics. An emphasis is placed upon the Reynolds
number dependence of the statistics and on the difference between active
and non-active regions in turbulence.

1.2 Background supporting the idea of universality
1.2.1 Kolmogorov’s 4/5 law

The existence of universality in the sense of K41 has not yet been proven rig-
orously, but there is evidence supporting it. Among this is Kolmogorov’s 4/5
law (Kolmogorov, 1941c), which is derived as a consequence of the Navier—
Stokes (NS) equation governing fluid motion.

Let u = u(x,t) be an incompressible turbulent velocity field obeying the
Navier-Stokes equation,

1 2
au—(u-V)u—;Vp-i-uV u+f, (1.1)

and the incompressibility condition,
V.u=0, (1.2)

where v is the kinematic viscosity, p the pressure, f the external force per
unit mass, and p the fluid density.

For homogeneous and isotropic (HI) turbulence, the NS equation with
the incompressibility condition (1.2) yields the Karman-Howarth equation
(Karman and Howarth, 1938)

4 OB (r

B:{’(T)=—g(e)7"+6u (’)+F(7-) 3 7'63‘5(7“)7:4(171’

— — 1.
(‘)T 7'4 0 ()t ( 3)
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where (€) is the average of the rate of energy dissipation € per unit mass,
and BL(r) is the nth order structure function of the longitudinal velocity
difference du’ defined as

BL(r) = <[(5ul’(7')]n> , dul(r) = [u(x+re) —u(x)] - e, (1.4)

in which e is an arbitrary unit vector. In (1.3), F' is expressed in terms of
the correlation g(r) = ([u(r + x) — u(x)] - [f(r + x) — £(x)]). It is shown by
simple algebra that

F(r) :% /0 FG(F)dF, G(r)= / ' 7 g(7)dr.

0
If the forcing f is confined only to large scales, say ~ L (where the symbol
~ denotes an equality up to a coefficient of order unity), and the viscosity
v is very small, then it is plausible to assume that in (1.3),

(i) the forcing term F(r) is negligible at r < L,
(ii) the viscosity term works only at small scales, say ~ 7, so that it is
negligible at r > 7, and
(iii) the statistics is almost stationary at small scales, so that the last term
is negligible at r < L.

Under these assumptions, (1.3) yields the 4/5 law,

BH(r) =~ (), (15)
for L>r>n.

Note that the 4/5 law (1.5) applies not only to the stationary but also to
the freely-decaying case, as long as one may assume (iii), in addition to (i)
and (ii), where L is to be understood appropriately, e.g., as the characteristic
length scale of the energy containing eddies.

The relation (1.5) asserts that BZ(r) is specified only by () and r. It holds
independently of the shapes, internal structures, deformations, positions,
alignments, interactions, collision and reconnection processes, etc. of small-
scale eddies, however the term ‘eddies’ may be defined, and also of the forcing
and boundary conditions outside the range r < L, as long as (i), (ii) and
(iii) hold. (This doesn’t mean that B¥(r) is independent of these factors and
conditions, as they may still affect (€): rather, the relation (1.5) means that
their influence, if any, is only through (¢).)

The relation (1.5) holds independently of these factors, just as the ideal
gas laws hold independently of the shapes, internal structures, interactions,
collision processes etc. of the molecules comprising the gas, and indepen-
dently of the shape of the container of the gas. The relation is in this sense
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Figure 1.1 Normalized longitudinal one-dimensional energy spectrum. The data except
those by DNS-ES are re-plotted from Tsuji (2009).

universal, and supports the idea of existence of universality in the sense of
K41.

1.2.2 Emnergy spectrum

More support for the existence of universality in the sense of K41 is given by
the second-order two-point velocity correlations, or, equivalently, the veloc-
ity correlation spectra observed in experiments and DNS. If the second-order
moments of u(x + r) — u(x) are universal in a certain sense at small scale,



