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Introduction

This book is based on notes for lectures given at the Mathematical Institute
at the University of Oxford over the three years 2004-2007; as a graduate
course both in 2004-2005 and in 2006-2007, and as the undergraduate
course Introduction to Modular Forms in 2005-2006.

This book

This book focuses on the computational aspects of the theory of modular
forms much more than most other books do. It is designed to be an in-
troduction to these computational aspects of the theory. Computational
algebra packages like MAGMA and SAGE can, for instance, compute Fourier
expansions of modular forms and modular functions to an extremely high
precision. This book will hopefully help the student to use computers to
deepen their understanding of modular forms and number theory.

It also gives a grounding in the theory of classical modular forms, start-
ing with modular forms for SLy(Z), and progressing to modular forms of
higher level, modular functions, half-integral weight modular forms and
mod p modular forms. The two aspects are intended to complement each

other, each helping to motivate and inspire the other.

Possible courses

The courses that this book is based upon were all 16-lecture courses, given
over one Oxford term. The undergraduate course was given to final-year
undergraduate students and to students taking a one-year taught Master’s
course.



2 Modular Forms: A Classical and Computational Introduction

This book concentrates on the computational aspects of the theory of
modular forms, but at the same time also gives a grounding in the classical
and theoretical aspects of modular forms. We now list some possible courses
which could be given based upon this book.

One possible way to give a course using this book would involve teaching
students essentially only about modular forms for the full modular group,
as [Serre (1973a)] does, in a broadly “traditional” way. This could still
include interesting arithmetic, such as a study of the Ramanujan 7 function
and the j-invariant, but avoids the complication of higher levels. There
are some projects in the computational chapter which could be used to
stretch the more able students and also serve as inspiration for end-of-
course projects, especially for beginning graduate students.

If the instructor has more time, then the theory of modular forms for
congruence subgroups of SLa(Z) could also be introduced. This would
allow the introduction of many well-known modular forms, such as those
associated with elliptic curves, many 7-products and theta functions. The
work of Wiles and Taylor in proving the modularity conjecture, and hence
Fermat’s Last Theorem, is of great public interest, and the general concepts
of the proof can be presented.

Another possible course would be one focused on introducing students to
computational number theory, using modular forms as motivational exam-
ples. This might include teaching students about MAGMA, PARI and SAGE,
as well as giving them an overview of the history of computation. End-of-
course projects for this course could include more or less programming to
suit the instructor and the level of the students. The graphically inclined
could write programs similar to those of Verrill [Verrill (2001)] to create
pictures of fundamental domains, or use the graphics creation facilities of
PARI and SAGE to create other graphics.

A third possibility would be to teach a course dealing with theta func-
tions, starting with their history (see, for example, [Glaisher (1907a,b,c)],
for early computational results) and continuing to modern-day work. This
course could balance theoretical work showing that theta functions really
are modular forms with computations of explicit theta functions, and more
advanced students could read books like [Miyake (2006)] which give more
details on this subject.

The instructor could also teach a course emphasizing the applications
of modular forms in number theory and elsewhere. It is important to re-
alize that, despite their definition as holomorphic functions from H to C,
modular forms have a rich number-theoretic theory, and Chapter 5 gives a
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sample of some of the many and varied results that rely on the theory of
modular forms.

An overview of this book!

We encourage the reader of this book to use their favourite computer alge-
bra package (such as MAGMA or SAGE) to compute examples as they read,
to help them develop their intuition. The best way to learn how to use such
a package is to experiment with it to find out how it works; Chapter 7 gives
an introduction and brief overview, but there is no substitute for hands-on
experience.

The chapters cover the theory in the following way: Chapter 2 gives the
definition of a modular form for SLy(Z), and proves that modular forms
exist (which is not obvious to a newcomer to the subject). We also define
fundamental domains and modular forms for congruence subgroups.

In Chapter 3, we consider modular forms as complex-analytic objects,
and use this aspect of their character to prove that spaces of modular forms
of a given weight for a given congruence subgroup are finite-dimensional.
Following on from this, in Chapter 4 we introduce the Hecke operators,
which are linear operators acting on spaces of modular forms, and prove
results about them. We note that these operators explain the recurrence
relations that the coefficients of A(q) satisfy, for instance.

We then apply the results derived in these chapters in Chapter 5 to a
variety of applications, such as Fermat’s Last Theorem, computing digits
of m, and computing the number of representations of integers by quadratic
forms. We also introduce the concept of mod p modular forms in Chapter 6,
give structure theorems for mod p modular forms, and talk about Serre’s
Conjecture, which has been proved very recently.

Finally, we consider the practical side of computation in Chapter 7; after
giving a brief introduction to the history of computations in the world
of number theory, which includes such highlights as the Lehmer bicycle-
chain sieve, we introduce the computer algebra packages MAGMA, SAGE and
PARI, and briefly touch on the theoretical side of computing in mathematics.
The book ends with appendices containing examples of code for the algebra
packages discussed in the text.

1Many books have a section of this nature. We note that [Lamport (1994)] is one of
the very few that has a section called “How to Avoid Reading This Book”.






