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Origami: Unfolding the
Future

Introduction

ematics are featured in this volume of What's Happening

in the Mathematical Sciences. “Prime Clusters and Gaps:
Out-Experting the Experts,” page 18, talks about new insights
into the distribution of prime numbers, the perpetual source of
new problems, and new results. Recently, several mathemati-
cians (including Yitang Zhang and James Maynard) significantly
improved our knowledge of the distribution of prime numbers.
Advances in the so-called Kadison-Singer problem and its ap-
plications in signal processing algorithms used to analyze and
synthesize signals are described in “The Kadison-Singer Prob-
lem: A Fine Balance,” page 72. “Quod Erat Demonstrandum,”
page 64, presents two examples of perseverance in mathemati-
cians' pursuit of truth using, in particular, computers to verify
their arguments. Also, “Following in Sherlock Holmes’ Bike
Tracks,” page 52, shows how an episode in one of Sir Arthur
Conan Doyle's stories about Sherlock Holmes naturally led to
veryinteresting problemsin the theory of completelyintegrable
systems.

On the applied side, “Climate Past, Present, and Future,”
page 36, shows the importance of mathematics in the study of
problems of climate change and global warming. Mathematical
models help researchers to understand the past, present, and
future changes of climate, and to analyze their consequences.
Economists have known for a long time that trust is a corner-
stone of commerce. “The Truth Shall Set Your Fee,” page 28,
shows how recent advances in theoretical computer science led
to the development of so-called “rational protocols” for infor-
mation exchange, where the seller of information is forced to
tell the truth in order to maximize profit.

Over the last 100 years many professional mathematicians
and devoted amateurs contributed to the problem of finding
polygons that can tile the plane, e.g., used as floor tiles in large
rooms and walls. Despite all of these efforts, the searchisnotyet
complete, as the veryrecent discovery of anew plane-tiling pen-
tagon shows in “A Pentagonal Search Pays Off,” page 86. The
increased ability to collect and process statistics, big data, or
“analytics” has completely changed the world of sports analyt-
ics as shown in “The Brave New World of Sports Analytics,”
page 96. The use of modern methods of statistical modeling al-
lows coaches and players to create much more detailed game
plans in professional baseball and basketball as well as create
many new ways of measuring a player’s value. Finally, “Origami:
Unfolding the Future,” page 2, talks about the ancient Japan-
ese paper-folding art and origami’s unexpected connections to
avariety of areas including mathematics, technology, and edu-
cation.

S EVERAL IMPORTANT RECENT DEVELOPMENTSin pure math-



Fire Tower (2013). Curved folds represent both a departure from tradition in origami and
an area of active research. (Courtesy of the artists, Erik Demaine and Martin Demaine.)
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Origami: Unfolding the
Future

DanaMackenzie

(or paper-folding) has for more than 1400 years been a

quintessential Japanese art. Generations of children and
adults have learned how to fold classical figures like the crane,
the jumping frog, and the flapping bird.

In the last few years, however, origami has taken off in a
new, high-tech direction. Engineers are now designing retinal
implants that will unfold inside the human eye, and enable
people who have lost their vision to see again; robots that fold
themselves out of a flat plane into three dimensions and then
walk away; and “metamaterials” that change their physical
properties on demand. Origami engineering uses new mate-
rials, breaks size barriers (creating objects that are scarcely
larger than a mote of dust), and places a new emphasis on
functionality rather than aesthetics. It also poses some new
mathematical challenges.

Much of the explosion in research can be attributed to a
visionary program of the National Science Foundation, called
Origami Design for Integration of Self-assembling Systems
for Engineering Innovation, or ODISSEL Conceived by Glaucio
Paulino of NSF's Engineering Directorate, ODISSEI funded eight
projects in 2012 and five more in 2013, each one to the tune
of $2 million. (The Air Force’s Office of Scientific Research
also kicked in some of the money.) “The ODISSEI program has
made a huge difference,” says Larry Howell of Brigham Young
University, principal investigator on one of the grants. “As an
engineer, when you do something as bold and audacious as
origami, people ask you what you are talking about. You show
them the funding source and it gives you instant credibility.”

E LEGANT IN ITS DESIGN and simple inits materials, origami

Some History of Mathematical Origami

Even before ODISSEI, origami science had been quietly gather-
ingmomentum formore than two decades. One of its pioneers in
the United States was Robert Lang, a former engineer at the Jet
Propulsion Laboratory and lifelong origami artist. In the early
1990s, Lang developed the first computer program for design-
ing origami models, called TreeMaker. If you wanted to make an
origami model for anything—say a beetle or a rhinoceros—and
you could draw a stick figure of it, TreeMaker could calculate
the folds required to bring your figure to life. (See Figure 1, next
page.)

TreeMaker works by computing a circle packing of a square
sheet of paper, which allocates each disk to make one ap-
pendage of the future model. The sizes of the disks correspond
roughly to the sizes of the appendages, and adjacent disks
correspond to adjacent appendages. Ironically, Lang says that
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Figure 1. “Roosevelt Elk, opus 358.” It is believed that Robert Lang’s “TreeMaker” software can print
out a fold pattern to create an origami version of any 3-dimensional object, provided that the object
can be drawn as a stick figure. However, this universality property has not been formally proved. (Left)
An elk. (Right) The fold pattern used to create it. (Courtesy of Robert J. Lang, http://langorigami.com.)

he seldomuses TreeMaker in his own art. “TreeMaker is a single
idea, andIlike to combine multiple concepts,” he explains.

In 1998, Frik Demaine of the Massachusetts Institute of
Technology (together with his father, Martin Demaine, and
Joseph Mitchell of Stony Brook University) proved the foldabil-
ity of any polygonal silhouette and any three-dimensional poly-
hedron from a single square of paper. In other words, if you can
visualize it, you can fold it. However, the piece of paper may
need to be enormous. As Demaine says, it would be interest-
ing to know an efficient universal folding algorithm. The closest
thing to dateis another algorithm called Origamizer, written by
Tomohiro Tachi of the University of Tokyo in 2008, for which
Tachi and Demaine are close to proving universality.

Japan, the birthplace of origami, began to awaken to the po-
tential of mathematical origamiaround the same time as people
like Lang and Demaine in the West. Jun Maekawa, a physicistand
software engineer, pioneered the study of crease patterns (the
network of “mountain folds” and “valley folds” leftin the paper
whenithas been folded into a model and unfolded again).

One of the most frequently cited theorems of origami math-
ematics is named after Maekawa. In classical origami, the final
goal is usually an animal, such as a rhinoceros or a beetle, or
an everyday object in three dimensions. But in many applica-
tions of origami, one needs to fold an initially large amount of
material into a very small space. If the material could be folded
flat, its volume would be essentially zero. (In the real world, of
course, materials have thickness and volumes are not zero—but
atleast thisis a target the designer can aim for.) So the question
is: Which crease patterns canfoldupintoaflat, two-dimensional
figure? Maekawa’s theorem gives a necessary condition: at any
flat-foldable vertex, the number of mountain folds and the num-
ber of valley folds must differ by two.

4 WHAT’S HAPPENING IN THE MATHEMATICAL SCIENCES



Figure 2.Robert Lang with Miura-ori
fold. (Top) Semi-folded Miura-ori. (Center)
Miura-ori in compressed state. (Bottom)
Miura-ori fully extended. The transition
from folded to unfolded is accomplished by
pulling the sides out in one smooth motion.
(Photo courtesy of Dana Mackenzie.)

Koryo Miura of the Japanese Institute of Space and Astronau-
tical Science (ISAS) made another hugely important discovery
about flat folding. As early as the 1970s, Miura began thinking
about the problem of how a thin, flexible plate will buckle if you
apply uniform compression to the outside. He discovered a pro-
totypical solution, a sort of herringbone pattern, now called the
Miura-ori or “Miura fold.” The unfolded crease pattern for the
Miura-ori looks like a pattern of zigzagging parallelograms. In
accordance with Maekawa'’s theorem, there are three mountain
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Itai Cohen. (Photo courtesy of Cornell University Photography.)

folds and one valley fold at every vertex, or vice versa. While
tricky to fold from scratch, the Miura-ori is incredibly easy to
fold when the paper is pre-scored. All you have to do is grab
two corners and pull out; to fold it back in again, you take two
corners and pushin. (See Figure 2, previous page.)

These motions will cause the entire pattern, no matter how
large, to expand or collapse at once. The Miura-ori is the ulti-
mate solution to the map-folding problem. When you try to fold
a conventional map, it nearly always folds up wrong. There are
too many folds, and inevitably some of them will be done in the
wrong order or in the wrong direction. With a Miura-ori map,
on the other hand, folding or unfolding is foolproof, and it only
takes a second.

It is often said that Miura developed his fold for the Japan-
ese space program. Thatis not quite accurate, because his work
started as the solution to a theoretical math problem. However,
a solar array folded in the Miura-ori pattern flew aboard ISAS’
Space Flyer Unit, launched in 1995, which demonstrated for the
first time the practicality of using origami to stow a large array
of solar panels inside a small spaceship.

Pop Goes the Defect
The Miura-ori is fundamental for anyone who wants to under-
stand howmovable origamiworks.Itai Cohen,aphysicistat Cor-
nell University, callsit “the hydrogen atom of origami,” because
itisone of the simplest possible tessellated folding patterns, yet
still exhibits a variety of interesting and unexpected behaviors.
One remarkable feature of the Miura-ori crease patternis its
near-rigidity: it has one degree of freedom. A rigid object has no
degrees of freedom. The one degree of freedom of the Miura-ori
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is provided by pulling out or pushing in on the corners. Once the
motion is initiated in one place, the whole object has no choice
but to follow. It has no unwanted, or “parasitic” motions.

The Miura-ori also has aremarkable physical property called
a negative Poisson ratio. (Materials with this property are some-
times called auxetic, which is a little bit easier to say.) If you
stretch most materials in one direction, they will tend to shrink
in the transverse direction(s). The ratio between the amount of
stretching in one direction and the amount of shrinking in the
other(s) is called the Poisson ratio, and it is normally between O
(e.g.,cork)and 1/2 (e.g.,rubber).

However, whenyou stretch amaterial with anegative Poisson
ratioinonedirection, itwill stretchinthetransversedirection(s)
as well. The Miura-ori behaves exactly like this: pull the sides of
the map, and the top and bottom will move out at the same time.

The physicist who is widely credited with inventing the first
synthetic auxetic material was Rod Lakes of the University of
Wisconsin. He described his material, a polymer foam with non-
convex unit cells, in an article in Science in 1987. By now, many
auxetic materials have been created. They have found applica-
tion in sports wear, for instance, because they are good shock
absorbers.

In 2010, Jesse Silverberg, a lifetime origami enthusiast and
graduate student in physics at Cornell, happened to go out
to dinner after a talk with Chris Santangelo, a professor, and
Marcelo Diaz, a fellow graduate student. The talk was about the
geometry of folding so, Silverberg says, “I started folding some-
thinglhad learned years and years ago”—namely, the Miura-ori.
“I passed it to Marcelo and he passed it to Chris, and each of
them said, holy crap!” What they had in front of them was an
auxetic material—only it wasn’t made of polymer foam, it was
made out of simple paper. And it had been known long before
1987. They could be forgiven their holy-crap moment; it was
like meeting someone from a different planet, and finding out
thathe already knows about the most sophisticated discoveries
on your own planet.

Technically, the Miura-ori folded paper is not a material but
ametamaterial: a material whose physical properties are partly
based onits shape or configuration. An even simpler example of
ametamaterial is reinforced cardboard. Three pieces of paper,
stacked on top of each other, are not very stiff. But if you make
the inside layer corrugated, the three layers together become
stiffer and you have something that you can make boxes out of.

When the ODISSEI program was announced, Santangelo and
Cohensentinaproposal to study origami-based metamaterials,
and theywere funded in 2012. Asit turned out, the surprises had
justbegun.

One of their collaborators, mathematician Thomas Hull of
Western New England University, was particularly interested in
misfolded Miura-ori(see Figure 3, next page). Thismay seemlike
a curious preoccupation, given the fact that the whole advan-
tage of Miura-oriis the ease of foldingit correctly. Nevertheless,
Hull had noticed that if you deliberately convert some of the
mountain folds in the Miura-ori to valleys and vice versa, you
can sometimes get a flat-foldable pattern. He set his student
Jessica Ginepro to work on counting the number of misfolded
patternsina 2-by-n Miura-ori, a 3-by-n, and so on.

Jesse Silverberg. (Photo courtesy
of Jesse L. Silverberg.)
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Figure 3. Misfolded Miura-ori. The orange vertex has been
"popped" downward, creating a defect. (Figure courtesy of
Jesse L. Silverberg, Arthur A. Evans, Lauren McLeod, Ryan
C. Hayward, Thomas Hull, Christian D. Santangelo, and Itai
Cohen.)

Meanwhile, Santangelo, Cohen and Silverberg were looking
at another way of mutilating a Miura-ori, by “popping through”
its corners. If you push on one vertex of a Miura-ori, you can get
it to pop through, converting a peak to a sink or vice versa. The
popped Miura-oriis no longer flat foldable; the faces next to the
popped vertex have to be bent. (The mere fact that it “pops” in-
dicates that it is not a rigid motion. A rigid door swinging on a
hinge does not pop.)

The first discovery that they made was that a Miura-ori with
popped vertices is much stiffer than a non-popped one (see Fig-
ure 4). Maekawa's theorem mathematically forbids you to fold
it flat, because the popping changes the number of mountain
folds and valley folds at each vertex. Physically, if you try to fold
it flat, its resistance to compression will skyrocket until one of
the creases tears. “With paper, you can get it 10 to 100 times
stiffer by introducing defects,” Silverberg says. “Ten is what we
were able to easily achieve, and around 100 we run into a limit
because of the strength of the material. If we worked with plas-
tic sheets, or something with a higherresistance to tearing, then
100 could be just the beginning.”

The variable-stiffness property of popped Miura-ori makes
it a tunable metamaterial. Unlike corrugated cardboard, whose
stiffness is set once and for all, you can adjust the stiffness of
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Figure 4. (Top) Properly folded Miura-ori collapses easily. (Cen-
ter) Defect in a misfolded Miura-ori resists collapsing. (Bottom)
Pairs of defects can sometimes “cancel out" and create a flat-
foldable design. (Figure courtesy of Jesse L. Silverberg, Arthur
A. Evans, Lauren McLeod, Ryan C. Hayward, Thomas Hull,
Christian D. Santangelo, and Itai Cohen.)

a Miura-ori by increasing or decreasing the density of defects.
You can also arrange the defects to make a hinge, or vice versa,
to make a strut that is exceptionally resistant to bending. “Our
idea is to use self-folding techniques to create robot limbs that
change their mechanical properties,” says Cohen. “You can fold
a claw around something, make the claw rigid, and then pick it
up.

Perhaps the most surprising discovery was the fact that
defects can cancel each other out and make the Miura-ori flat-
foldable again. The teamrealized that some of Hull's misfolded
Miura-ori had a crease pattern that looked like two adjacent
popped-through vertices. “Our spidey sense was tingling,”
Silverberg says. In fact, the equal-and-opposite pops restore the
numbers of valley and mountain folds so that they once again
obey Maekawa’s theorem. Once the mathematical obstacle to
flat foldability disappears, the increased stiffness alsovanishes.
“The idea of defects interacting came out of nowhere,” says Co-
hen. “It was a total surprise. [ had some initial intuition about
the defects, but it wasn't until Jesse started working with the
models that we discovered this. It was not what I predicted—it
was much cooler.”
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Sam Felton. (Photo courtesy of
Peter York.)

Self-Assembling Robots

The Cornell group reported their results on tunable metamate-
rialsin Science magazine in August 2014. Not so coincidentally,
their article appeared back-to-back with an article by another
ODISSEI-funded group, co-organized by Demaine, Daniela Rus
of MIT and Robert Wood of Harvard University. This paper, writ-
ten by graduate student Sam Felton, reported on the first self-
folding and self-activating robot (see Figure 5).

The Harvard/MIT group in fact progressed toward the ro-
bot in several stages. In earlier steps, they built a lamp that as-
sembled itself but couldn’t turnitself on, and an inchworm that
could move on its own but required some human help in as-
sembly. At the same time they were experimenting with sev-
eral different shape-memory materials. According to Felton,
their “secret sauce” is something that can be bought in a toy
store—aheat-activated polymer called prestressed polystyrene
or Shrinky Dinks. When heated toabout 100 degrees Celsius, the
Shrinky Dinks contract.

Ifalineis cutinapieceof cardboard and a piece of polystyrene
is taped over it, the polystyrene acts as a hinge. As it contracts,
it pulls the two sides of cardboard toward one another, creating
a fold. The change is permanent, because the Shrinky Dinks
cannot expand again after they have contracted. The angle of
the fold can be controlled by the thickness and spacing of the
two pieces of cardboard. Somewhat ironically for a project in-
spired by origami, the cardboard itself does not bend; it mostly
adds stiffness and stability to the robot. The self-folding robot
was made from five layers of material. On the outside were two
layers of Shrinky Dinks (to allow both mountain folds and valley
folds). Justinside them were two layers of cardboard, cut along
each of the future folds. Finally, in the center of the sandwich
was a single thin film that contains all the electronic wiring.

Feltonfirstlaid out the five-layer sandwich, with all the layers
appropriately pre-scored and wired, and connected it to batter-
ies and a microcontroller on top. This part of the assembly was
done by hand, and took two hours. Then he turned the switch
on. The microcontroller would execute a series of commands to
heat up each wire in turn, activating the folds and causing the
whole robot to rise up from the table like a salamander from
the primordial ooze. This self-assembly phase took less than
five minutes. After that, another series of pre-programmed
commands caused the newly formed legs to move, and the
robot trundled away under its own power. At a clip of 3 meters a
minute, or about an eighth of a mile per hour, it couldn’t win the
Olympics but it could win a race with a snail.

Of course the self-folding robot was a proof of principle
rather than a practical device. However, it has potential for
application in two realms that pose challenges for traditional
methods of assembly. One would be space missions, where
it would be advantageous to store a rover as a flat panel in
flight, then unfold and deploy it after arrival. With no humans
on board, the rover would have to be self-assembling and
self-activating.

A second application would be microscopic devices. For such
devices, conventional assembly methods don’t work because,
as Cohen says, “We don’t have good nano-screws yet.” Three-
dimensional printing, though it is all the rage in techie circles,
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