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PREFACE

Over the past five years the major research effort of the Control
Theory Centre at the University of Warwick has been in the area of
infinite dimensional system theory. The philosophy underlying the re-
search has been to develop a mathematical framework which enables the
generalisation of the finite dimensional results to infinite dimensions
and which includes both distributed parameter systems and differential
delay systems as special cases. So following the lead of Fattorini in
[6], we describe the system dynamics in terms of a strongly continuous
semigroup on an appropriate Banach space. Using this unifying mathem-
atical approach it is possible to clarify the essential concepts of
observability, controllability, the quadratic cost control problem, and
the estimation and control problems for stochastic systems. At this
stage we feel it is appropriate to present the culmination of this col-
lective effort in a coordinated way in the form of lecture notes.

Of course it has not been possible to cover all of the systems theory
concepts, and significant omissions are realization theory and identif-
ication. Readers interested in these areas should see for instance [11]
and watch out for the forthcoming monograph by Fuhrmann [7]. We hope,
however, that these notes will provide an introduction to infinite dim-
ensional system theory, accessible to readers with a knowledge of fin-
ite dimensional theory and some functional analysis. The treatment of
the material reflects our own personal approach and is by no means the
only way or even the most commonly accepted way. While it is aesthet-
ically pleasing that the abstract formulation yields results which mir-
ror those for finite dimensions; because the state space is infinite
dimensional this superficial resemblance can be misleading. Consequen-
tly we have examined the implications of the abstract theory to specific

examples of distributed and delay systems.

Many other researchers have contributed to infinite dimensional sys-
tems theory, some using a semigroup approach and others using methods
appropriate for special classes of systems. For example Butkovskii [2]
and Lions [9] have examined optimal control problems for deterministic
distributed parameter systems and Bensoussan [1] estimation and control
of stochastic distributed systems. The pioneering work on controllab-
ility and observability of hyperbolic and parabolic partial differential
equations was developed by Fattorini [5] and Russell[12],whilst Kirill-
ova [8], Manitius [10], Banks [4] and Lee [ 3] have contributed to the



study of differential delay systems. Tt has not been possible to incl-
ude all of these special results for particular systems in these notes.
What we have tried to do, however, is to illustrate through the examples
how many of these special results may be obtained using an abstract
semigroup approach and at the end of each chapter included references

of other contributions.

The first chapter reviews the types of finite dimensional systems
theory results which will be generalized to infinite dimensions in
chapters 3-7 and gives several examples of how such problems may arise
in distributed and delay systems. To make these notes self-contained,
chapter 2 presents the known results on semigroups, which we shall need
in later chapters. Chapters 3-7 form the core of the book, namely the
extension of the finite dimensional systems theory results outlined in
Chapter 1 for time-invariant linear systems. All these results are
proved in detail and are illustrated by several examples and would be
appropriate for an introductory graduate course in linear systems theory.
Chapters 8 & 9 are concerned with extensions of the results of Chapters
3-7 to more complicated systems, namely time dependent systems and dis-
tributed systems allowing for boundary control and point observations.
The difficulties which arise in trving to extend the results to more
general systems are technical mathematical ones rather than conceptual
ones. As the technical details are already available in the literature,
we have chosen to motivate the approach using simple examples and have
omitted proofs which are heavy technical extensions of those in earlier
chapters. So although a complete presentation of the results is avail-
able in Chapters 8 and 9, many proofs are given in outline only. Again,
considerable attention is given to analyzing the implications for dis-

tributed and delay systems by means of examples.

These lecture notes have been influenced by the many visitors to the
Control Theory Centre and especially by the SRC1 funded research fellows,
S.P. Banks, A. Ichikawa, E.P. Ryan, R. Triggiani, A. Wirth and J. Zabczyk.
It is also a pleasure to pay tribute to the former directors of the
Centre, Professor L. Markus and Professor P.C. Parks, for their guidance

1
Science Research Council (United Kingdom) which has supported the

Control Theory Centre from its inception in 1970.
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and encouragement in our research, and to Professor J.L. Douce and
Professor J.A. Shercliff of the Engineering Department for their con-
tinuing support of the Centre. Finally special thanks to Frances Ryan
for transforming a largely illegible manuscript into a respectable

typescript.
A.J. Pritchard, Director of Control Theory Centre,
University of Warwick.
Ruth F. Curtain, Control Theory Centre,
University of Warwick.
(presently at: Mathematics Institute,
Rijksuniversiteit Groningen.)
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CHAPTER 1
INTRODUCTION

Most dynamical systems which describe processes in engineering, phy-
sics, and economics are extremely complex and the identification of math-
ematical models is difficult. Consequently, early investigations of sys-
tems were confined mainly to analysing stability behaviour of very simple
models using frequency domain methods. In the last fifteen or so years
the state space approach has also become very popular and several new
systems theory concepts such as controllability, observability, linear
quadratic control, estimation and filtering, and realisation have been
introduced and analysed [1],[4],[5].,[9],[10]. However, these concepts
are only well understood for simple systems, namely linear difference
equations and linear ordinary differential equations. 1In the engineer-
ing jargon these simple systems are called lumped systems and they can
be described by linear maps on finite dimensional linear vector spaces.
For systems described by partial differential equations (distributed
systems) or by delay equations the appropriate state space is an infin-
ite dimensional function space and there has been some work on general-

izing the systems theory concepts to special classes of these systems
(2], [e].[7],[8].

Using a semigroup representation, we develop a self contained abstract
theory for a wide class of linear systems, both finite and infinite di-
mensional which includes lumped, delay and distributed systems. Results
are obtained which, when interpreted for a particular class of system,
yields the known results. Moreover, the abstract approach clarifies the
main ideas and mathematical problems so that new results are more easily

obtained.

We do not consider all the systems theory concepts here, but first
concentrate on controllability, observability and stabilizability which
turn out to be more complicated in infinite dimensions. We then con-
sider the quadratic cost control problem and its dual, the filtering
problem, and obtain the separation principle for infinite dimensional
stochastic systems. To motivate our approach we present a brief survey
of the finite dimensional theory concepts and results which we will

generalize in Chapters 2 - 7.



Finite dimensional linear systems theory

Here we restrict ourselves to systems which are described by linear
ordinary differential equations with a given initial state. Without
loss of generality, we suppose that by a suitable choice of state vector

the system has been expressed in the canonical form

(. 1} z = Az + Bu ; z(0)= z,,

where o z (t) € Rn, ufte) € Rm, A and B aren x n and n X m real mat-
rices respectively. u is the control term.
(1.1) is a differential equation on the state space RS and has the uni-

que solution

(1.2) z(t) = Pz +ft P (87S) gy (s)as
o
We also suppose that we have an associated observation of (1.1)
(13 y = Cz
where C is a real k X n matrix, so y € Rk.

The following concepts of stability, controllability and observability
for (1.1) and (1.3) are now standard.

Definition 1.1 Exponential stability

The matrix A in (l1.1) is exponentially stable if there exists positive

constants M,w such that

”eAt” < Me Ut for all t 2 O.

This implies that for the uncontrolled system (1.1) (with u = 0),
lz(t)ll > 0 as t » . A necessary and sufficient condition for the ex-
ponential stability of A is that the real parts of its eigenvalues are
strictly negative.

If one uses a feedback control u = -Fz, then (l.1l) becomes é=(A—BF)z
and this type of control can be used to stabilize an unstable system

z = Az.

Definition 1.2 Stabilizability

(1.1) or (A,B) is stabilizable if there exists an m X n matrix F, such
that A-BF 1is exponentially stable.

Another important systems theory concept is whether or not a pre-

assigned final state can be reached.



Definition 1.3 Controllability

(1.1) or (A,B) is controllable if any initial point z, can be steered
to an arbitrary final point z in some finite time tl by some control
u € L, (0,t ;R™).

(A,B) is controllable if and only if the following n X nm matrix has
rank n : [B : AB : A%B : ... : A"T1B].

It happens that if (A,B) is controllable, then (A,B) is stabilizable.
Controllability is also related to observability.

Definition 1.4 Observability

We say that (1.1),(1.3) or (a,C) is observable if ce™*z = 0 for all
t 2 0 implies z = 0. That is for the controlled system (1.1),(1.3), a
knowledge of y(t) and u(t) on a finite time interval [O,tl] uniquely

determines the initial state A

(A,C) is observable if and only if the rank of the following n x kn
matrix is n : [c': a'c': ... : (a")™ 1],
So controllability and observability are dual concepts in the sense

that (A,C) is observable if and only if (A',C') is controllable.

If the controller and/or observer is designed so that the system is
stable and controllable or observable, then the question of optimality

can be considered.

The quadratic control problem (regulator problem)

Consider (l1.1) and the cost functional
t1
(1.4) J) = z(t))'Gz(ty) + [ © {z(t)'Mz(t) + u(t) 'Ru(t)}dt
o

when G, M and R are real symmetric n X n, n x n, and m x m matrices
respectively, with G 20, M 20 and R > O. The regulator problem is to
find an optimal control u* € L2(O,t1;Rm) such that (1.4) is minimized.
Under the above assumptions, there exists a unique optimal control

(1.5) u*(t) = -R IB'Q(t)z (t)

where Q(t) is an n X n real symmetric matrix which is the unique solution
of the Riccati equation
Q(t) + Q(t)A + A'Q(t) + M = Q(t)BR-lB'Q(t)
(1.6)
Q(ty) =G

The optimal cost is J(u*) = zéQ(O)zo.



For G = O and t1= o we have the infinite time regulator problem
and if (A,B) and (A',M%) are stabilizable, there exists a unique optimal
feedback control of the form (1.5), where Q is time invariant and is the

unique solution of the algebraic Riccati equation

ik

(1:7) OA + A'Q + M = QBR "B'Q

The filtering problem

We consider a noisy signal process and a noisy observation process

described by the following stochastic differential equations

(1.8) dz (t) = Az (t)dt + DAw(t) ; z(0) = Z,

(1.9) dy (t) = Cz(t)dt + Fdv(t)

where A, D, C and F are real n X n, n xm, k X n, k x k matrices, z is
a Gaussian zero mean vector random variable with covariance matrix Po'
and w(t) and v(t) are independent vector-valued Wiener processes of
dimensions n and k and incremental covariance matrices W and V respect-
ively. The solution of (1.8) is a zero mean Gaussian stochastic pro-
cess with continuous sample paths and is given by

E
(1.10) z(t) = ™%z + [ 253 pay (s)
[}
The filtering problem is to find the best estimate % (t) of the sig-

nal process z(t) based on the observations y(s), O < s < t.

The solution is the well-known Kalman Bucy filter;
2(t) = E{z(t)] y(s); 0 <s £ t}, which is given by

as(t) = {A-P(t)C' (FVF') Ic}2 (£)at + P(t)c'(FVF')'ldy(t)
(1o 11
2(0) =0
where P(t) is the unique solution of the Riccati equation
1ep (v)

B(t) = AP(t) + P(t)A' + D'WD - P(t)C' (FVF')"
(Ls:12)

P (0O)

P
o

P(t) is the covariance of the error process, i.e.
5 0y p(t) = E{[z(t)- 2(t)] [z(t)- 2(t)]"}

If (A',C') and (A,DW%) are stabilizable, then the filter is stable
in the sense that measures induced by P(t) converge as tl+ © to P, the

unique solution of the algebraic Riccati equation

(1.14) PA' + AP + DWD' = PC' (FVF') ‘cp



The Riccati equations (1.12) for filtering and (1.6) for the regul-
ator problem are equivalent if in (1.12) we replace A by A', P(t) by
Q(tl-t), D'WD by M, C by B', FVF' by R and PO by G. A similar substit-
ution shows that (1.14) and (l1.7) are also of the same form. This rel-
ationship is known as the duality between the control and the filtering

problem.

The smoothing problem and prediction problem are also of interest
and are concerned with estimating z(t) based on the observations y(s),
l< t for the
prediction problem. The best optimal predictor %(t]tl) satisfies the

0 <s < tl’ where tl> t for the smoothing problem and t

stochastic differential equation

2t|t,) = az(t|t,)
(1.15) o L
Z(tlt))= 2(t;)

where E(tl) is the best optimal filter up to time tl‘ The best linear

smoother is also given in terms of the optimal filter 2 (t)

-1 A~

{ dz (t|t)) = AZ(t|t;)dt + D'WDA(t)dt + P (£)C'(FVF') "C(t)dt
(1.16)
z(tl|tl) = z(tl)
where
dx (t) = —(A—P(t)C(FVF')‘lc)'A(t)—C'<FVF')'1(dy(t)—c2(t)dt)

(1 1.7) {
Alt) =0

and P(t) is the covariance operator of (1.12).

The stochastic quadratic cost control problem

We consider the stochastic controlled differential equation

(1+18) dz(t) = Az (t)dt + Bu(t)dt + Ddw(t) ; z (0) = z,

with the noisy observation process
(1.9 dy (t) = Cz (t)dt + Fdv(t)

where we make the same assumptions on A, D, W, Zgr C, F and V as for the
filtering problem. B is a real n X m matrix and u(t) is an admissible
stochastic control. By admissible we mean that u e LZ(Q,p;Lz(O,tl;Rm))
and depends only on the past observations, y(s); O < s < t. The stoch-
astic control problem is to find the admissible control which minimizes
the expected value of the cost J(u) given by (1.4). The solution is
usually termed the separation principle, because the optimal control
strategy is to use the deterministic feedback law of (1.5), replacing

z(t) by its conditional expectation 2z (t), which is obtained using the



Kalman Bucy filter results. More precisely, the optimal control strat-

egy is given by

(1.20) u* (£) =-R IB'Q(t)2 (t)
az(t) = {a-P(t)C' (FVF')'l -BR™1B'O(£)}2 (£)dt +

(1.21) + P(t)C' (FVF') Ly (t)
2(0) =0

where Q(t) and P(t) are the solutions of (1.6) and (1.12) respectively.
The optimal cost is then

1

B il -
trace{GP(tl)}+'f trace{MP (s) }ds +‘f trace{Q(s)P(s)C' (FVF') ~CP(s)}ds
o) o)

To motivate the generalisation of the above systems theory to infin-
ite dimensions, we present several simple examples of delay and distrib-
uted systems where questions of stability, controllability, and optim-
ality might arise.

Examples of linear infinite dimensional systems

Example 1.1

Suppose we have a thin, narrow, homogeneous, continuous material
strip which is fed into a furnace by means of a variable-speed trans-
port mechanism. Then its temperature distribution can be modelled by
the diffusion equation

zt(x,t) = uzxx(x,t) + V(t)zx(x,t) + o{z(x,t)-u(x,t)}
ZX(O,t) =0 = zx(l,t)

where z is the temperature distribution, p is the coefficient of diff-
usivity,o0 is a constant proportional to the surface conductivity of the
material, v is the material-strip velocity, and u(x,t) is the external
temperature distribution of the strip. We shall suppose that we can
control u and that it is desirable to keep the outlet temperature z(l,t)
at some preassigned temperature 6 (t) say. Thus we are led to the con-
trollability problem of whether the desired outlet temperature can be
achieved and maintained. 1In general this will be impossible, and so
instead we may seek to minimize the functional

t

1
J =-/. {z(1,t)-6(t)}?*at
o

Usually the controls are constrained and we can express this by assuming
|u(t)[5 1 say, or by including a penalty for using too much control in

the functional J.



Example 1.2

In steel making plants it is necessary to estimate the temperature
distribution of metal slabs based on measurements at certain points on

the surface. A possible model for the temperature distribution is

PCyzy (x,8) = kz  (x,t) - alz (x,t)—zo(x,t)] + E(x,t) 3 O0<x<1
zX(O,t) =0 = zx(l,t)

where p, Cl’ k are the density, heat capacity, and effective thermal

conductivity of the metal slab, o is a heat transfer parameter, z, is
the average co®lant temperature, and & (x,t) is some distributed white
noise disturbance. The problem is to estimate the temperature profile

z(x,t); 0O <x <£1, t >0, based on the noisy measurements
yl(t) = Z(Xirt) + nl(t) H i=1121---rk

where X5 i=1,...,k are points on the surface of the slab and ni(t)

represents the measurement error.

Example 1.3

The evolution of the population of a country can be described by the
following linear hyperbolic partial differential equation

B, 4 B oy, r)pie,n)
ot dr

p(0,r) = p (r) ; 0 £rg

p(t,0) = u(t) ; 0<t<ty

where p(t,r) represents the population density of individuals of age r
at time t, u(t,r) is the mortality function, po(r) is the given initial
age distribution and u(t) is the birth rate which we assume is the con-
trol variable. The problem is to choose u so as to achieve a desired
age profile g(r) at the final time tyr and mathematically we could in-
terpret this as minimizing

it
1 1
J (u) =f {p(tl,r)-q(r)}zdr + f Auz(s)ds
o o
where the second term measures the social cost of controlling birthrate.

Example 1.4

Suppose we have a stretched nonuniform string whose motion is des-
cribed by

o(X)ztt(x,t) = <0t(X)zx(x,t))X = v(x,t)

z(0,t) =0 ; z(1l,t) = alt)



