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Preface to the Second Edition

The ongoing developments being made in large dimensional data analysis
continue to generate great interest in random matrix theory in both theoret-
ical investigations and applications in many disciplines. This has doubtlessly
contributed to the significant demand for this monograph, resulting in its first
printing being sold out. The authors have received many requests to publish
a second edition of the book.

Since the publication of the first edition in 2006, many new results have
been reported in the literature. However, due to limitations in space, we
cannot include all new achievements in the second edition. In accordance with
the needs of statistics and signal processing, we have added a new chapter on
the limiting behavior of eigenvectors of large dimensional sample covariance
matrices. To illustrate the application of RMT to wireless communications
and statistical finance, we have added a chapter on these areas. Certain new
developments are commented on throughout the book. Some typos and errors
found in the first edition have been corrected.

The authors would like to express their appreciation to Ms. Lii Hong for her
help in the preparation of the second edition. They would also like to thank
Professors Ying-Chang Liang, Zhaoben Fang, Baoxue Zhang, and Shurong
Zheng, and Mr. Jiang Hu, for their valuable comments and suggestions. They
also thank the copy editor, Mr. Hal Heinglein, for his careful reading, cor-
rections, and helpful suggestions. The first author would like to acknowledge
the support from grants NSFC 10871036, NUS R-155-000-079-112, and R-
155-000-096-720.

Changchun, China, and Singapore Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein
March 2009



Preface to the First Edition

This monograph is an introductory book on the theory of random matri-
ces (RMT). The theory dates back to the early development of quantum
mechanics in the 1940s and 1950s. In an attempt to explain the complex or-
ganizational structure of heavy nuclei, E. Wigner, Professor of Mathematical
Physics at Princeton University, argued that one should not compute energy
levels from Schrodinger’s equation. Instead, one should imagine the complex
nuclei system as a black box described by n x n Hamiltonian matrices with
elements drawn from a probability distribution with only mild constraints
dictated by symmetry considerations. Under these assumptions and a mild
condition imposed on the probability measure in the space of matrices, one
finds the joint probability density of the n eigenvalues. Based on this con-
sideration, Wigner established the well-known semicircular law. Since then,
RMT has been developed into a big research area in mathematical physics
and probability. Its rapid development can be seen from the following statis-
tics from the Mathscinet database under keyword Random Matrix on 10 June
2005 (Table 0.1).

Table 0.1 Publication numbers on RMT in 10 year periods since 1955

1955-1964 1965-1974 1975-1984 | 1985-1894 1995-2004
23 138 249 635 1205

Modern developments in computer science and computing facilities moti-
vate ever widening applications of RMT to many areas.

In statistics, classical limit theorems have been found to be seriously in-
adequate in aiding in the analysis of very high dimensional data.

In the biological sciences, a DNA sequence can be as long as several billion
strands. In financial research, the number of different stocks can be as large
as tens of thousands.

In wireless communications, the number of users can be several million.



Preface to the First Edition

All of these areas are challenging classical statistics. Based on these needs,
the number of researchers on RMT is gradually increasing. The purpose of
this monograph is to introduce the basic results and methodologies developed
in RMT. We assume readers of this book are graduate students and beginning
researchers who are interested in RMT. Thus, we are trying to provide the
most advanced results with proofs using standard methods as detailed as we
can.

After more than a half century, many different methodologies of RMT have
been developed in the literature. Due to the limitation of our knowledge and
length of the book, it is impossible to introduce all the procedures and results.
What we shall introduce in this book are those results obtained either under
moment restrictions using the moment convergence theorem or the Stieltjes
transform.

In an attempt at complementing the material presented in this book, we
have listed some recent publications on RMT that we have not introduced.

The authors would like to express their appreciation to Professors Chen
Mufa, Lin Qun, and Shi Ningzhong, and Ms. Lii Hong for their encouragement
and help in the preparation of the manuscript. They would also like to thank
Professors Zhang Baoxue, Lee Sungchul, Zheng Shurong, Zhou Wang, and
Hu Guorong for their valuable comments and suggestions.

Changchun, China Zhidong Bai
Cary, North Carolina, USA Jack W. Silverstein
June 2005
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Chapter 1
Introduction

1.1 Large Dimensional Data Analysis

The aim of this book is to investigate the spectral properties of random
matrices (RM) when their dimensions tend to infinity. All classical limiting
theorems in statistics are under the assumption that the dimension of data
is fixed. Then, it is natural to ask why the dimension needs to be considered
large and whether there are any differences between the results for a fixed
dimension and those for a large dimension.

In the past three or four decades, a significant and constant advancement
in the world has been in the rapid development and wide application of
computer science. Computing speed and storage capability have increased a
thousand folds. This has enabled one to collect, store, and analyze data sets
of very high dimension. These computational developments have had a strong
impact on every branch of science. For example, Fisher’s resampling theory
had been silent for more than three decades due to the lack of efficient random
number generators until Efron proposed his renowned bootstrap in the late
1970s; the minimum L1 norm estimation had been ignored for centuries since
it was proposed by Laplace until Huber revived it and further extended it
to robust estimation in the early 1970s. It is difficult to imagine that these
advanced areas in statistics would have received such deep development if
there had been no assistance from the present-day computer.

Although modern computer technology helps us in so many respects, it
also brings a new and urgent task to the statistician; that is, whether the
classical limit theorems (i.e., those assuming a fixed dimension) are still valid
for analyzing high dimensional data and how to remedy them if they are not.

Basically, there are two kinds of limiting results in multivariate analysis:
those for a fixed dimension (classical limit theorems) and those for a large
dimension (large dimensional limit theorems). The problem turns out to be
which kind of result is closer to reality. As argued by Huber in [157], some
statisticians might say that five samples for each parameter on average are
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enough to use asymptotic results. Now, suppose there are p = 20 parameters
and we have a sample of size n = 100. We may consider the case as p = 20
being fixed and n tending to infinity, p = 24/, or p = 0.2n. So, we have at
least three different options from which to choose for an asymptotic setup.
A natural question is then which setup is the best choice among the three.
Huber strongly suggested studying the situation of an increasing dimension
together with the sample size in linear regression analysis.

This situation occurs in many cases. In parameter estimation for a struc-
tured covariance matrix, simulation results show that parameter estimation
becomes very poor when the number of parameters is more than four. Also,
it is found in linear regression analysis that if the covariates are random (or
have measurement errors) and the number of covariates is larger than six, the
behavior of the estimates departs far away from the theoretic values unless
the sample size is very large. In signal processing, when the number of signals
is two or three and the number of sensors is more than 10, the traditional
MUSIC (MUltiple SIgnal Classification) approach provides very poor esti-
mation of the number of signals unless the sample size is larger than 1000.
Paradoxically, if we use only half of the data set—mnamely, we use the data set
collected by only five sensors—the signal number estimation is almost 100%
correct if the sample size is larger than 200. Why would this paradox happen?
Now, if the number of sensors (the dimension of data) is p, then one has to
estimate p? parameters (1p(p+ 1) real parts and p(p—1) imaginary parts of
the covariance matrix). Therefore, when p increases, the number of param-
eters to be estimated increases proportional to p? while the number (2np)
of observations increases proportional to p. This is the underlying reason for
this paradox. This suggests that one has to revise the traditional MUSIC
method if the sensor number is large.

An interesting problem was discussed by Bai and Saranadasa [27], who
theoretically proved that when testing the difference of means of two high
dimensional populations, Dempster’s [91] nonexact test is more powerful than
Hotelling’s T2 test even when the T2 statistic is well defined.

It is well known that statistical efficiency will be significantly reduced
when the dimension of data or number of parameters becomes large. Thus,
several techniques for dimension reduction have been developed in multivari-
ate statistical analysis. As an example, let us consider a problem in principal
component analysis. If the data dimension is 10, one may select three princi-
pal components so that more than 80% of the information is reserved in the
principal components. However, if the data dimension is 1000 and 300 princi-
pal components are selected, one would still have to face a high dimensional
problem. If one only chooses three principal components, he would have lost
90% or even more of the information carried in the original data set. Now,
let us consider another example.

Ezample 1.1. Let X;; be iid standard normal variables. Write
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()

i,j=1

which can be considered as a sample covariance matrix with n samples of a
p-dimensional mean-zero random vector with population matrix 7. An im-
portant statistic in multivariate analysis is

p
T, = log(detS,) = Z]-Og()‘n,j)’

j=1

where Ap, ;, j = 1, .-+, p, are the eigenvalues of S,,. When p is fixed, A, ; — 1

almost surely as n — oo and thus T, == 0.
Further, by taking a Taylor expansion on log(1l + x), one can show that

Vn/pT, 2, N(0,2),

for any fixed p. This suggests the possibility that 7}, is asymptotically normal,
provided that p = O(n). However, this is not the case. Let us see what hap-
pens when p/n — y € (0,1) as n — oo. Using results on the limiting spectral
distribution of {S,} (see Chapter 3), we will show that with probability 1

b(y) 10gm -1 )
P /(w 2y Y ) — @)@ —a(y))de = = —log(1-y)~1 = d(y) <0
(1.1.1)

where a(y) = (1 — /)%, b(y) = (1 + 1/9)*. This shows that almost surely

Vn/pTa ~ d(y)/np — —cc.

Thus, any test that assumes asymptotic normality of T,, will result in a serious
€ITOr.

These examples show that the classical limit theorems are no longer suit-
able for dealing with high dimensional data analysis. Statisticlans must seek
out special limiting theorems to deal with large dimensional statistical prob-
lems. Thus, the theory of random matrices (RMT) might be one possible
method for dealing with large dimensional data analysis and hence has re-
ceived more attention among statisticians in recent years. For the same rea-
son, the importance of RMT has found applications in many research areas,
such as signal processing, network security, image processing, genetic statis-
tics, stock market analysis, and other finance or economic problems.
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1.2 Random Matrix Theory

RMT traces back to the development of quantum mechanics (QM) in the
1940s and early 1950s. In QM, the energy levels of a system are described by
eigenvalues of a Hermitian operator A on a Hilbert space, called the Hamilto-
nian. To avoid working with an infinite dimensional operator, it is common to
approximate the system by discretization, amounting to a truncation, keep-
ing only the part of the Hilbert space that is important to the problem under
consideration. Hence, the limiting behavior of large dimensional random ma-
trices has attracted special interest among those working in QM, and many
laws were discovered during that time. For a more detailed review on appli-
cations of RMT in QM and other related areas, the reader is referred to the
book Random Matrices by Mehta [212].

Since the late 19508, research on the limiting spectral analysis of large di-
mensional random matrices has attracted considerable interest among mathe-
maticians, probabilists, and statisticians. One pioneering work is the semicir-
cular law for a Gaussian (or Wigner) matrix (see Chapter 2 for the definition),
due to Wigner [296, 295]. He proved that the expected spectral distribution
of a large dimensional Wigner matrix tends to the so-called semicircular law.
This work was generalized by Arnold [8, 7] and Grenander [136] in various
aspects. Bai and Yin [37] proved that the spectral distribution of a sam-
ple covariance matrix (suitably normalized) tends to the semicircular law
when the dimension is relatively smaller than the sample size. Following the
work of Marcenko and Pastur [201] and Pastur [230, 229], the asymptotic
theory of spectral analysis of large dimensional sample covariance matrices
was developed by many researchers, including Bai, Yin, and Krishnaiah [41],
Grenander and Silverstein [137], Jonsson [169], Wachter [291, 290], Yin [300],
and Yin and Krishnajah [304]. Also, Yin, Bai, and Krishnaiah [301, 302],
Silverstein [260], Wachter [290], Yin [300], and Yin and Krishnaiah [304] in-
vestigated the limiting spectral distribution of the multivariate F-matrix, or
more generally of products of random matrices. In the early 1980s, major
contributions on the existence of the limiting spectral distribution (LSD)
and their explicit forms for certain classes of random matrices were made.
In recent years, research on RMT has turned toward second-order limiting
theorems, such as the central limit theorem for linear spectral statistics, the
limiting distributions of spectral spacings, and extreme eigenvalues.

1.2.1 Spectral Analysis of Large Dimensional
Random Matrices

Suppose A is an m xm matrix with eigenvalues A;, 5 = 1,2, -+, m. If all these
eigenvalues are real (e.g., if A is Hermitian), we can define a one-dimensional
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distribution function
1
FA@) = —#{j<m:); <z} (1.2.1)

called the empirical spectral distribution (ESD) of the matrix A. Here #E
denotes the cardinality of the set E. If the eigenvalues A;’s are not all real,
we can define a two-dimensional empirical spectral distribution of the matrix
A:
1
FA(z,9) = —#{j <m: R(Y) < 3, () <y} (1.2.2)

One of the main problems in RMT is to investigate the convergence of
the sequence of empirical spectral distributions {FA=} for a given sequence
of random matrices {A,}. The limit distribution F (possibly defective; that
is, total mass is less than 1 when some eigenvalues tend to =4oo), which is
usually nonrandom, is called the limiting spectral distribution (LSD) of the
sequence {A,}.

We are especially interested in sequences of random matrices with dimen-
sion (number of columns) tending to infinity, which refers to the theory of
large dimensional random matrices.

The importance of ESD is due to the fact that many important statistics
in multivariate analysis can be expressed as functionals of the ESD of some
RM. We now give a few examples.

Ezample 1.2. Let A be an n X n positive definite matrix. Then
n 00
det(A) = H Aj = exp (n/ 1oga:FA(d:c)> .
=1 0

Ezxample 1.3. Let the covariance matrix of a population have the form ¥ =
XYy + oI, where the dimension of X' is p and the rank of ¥, is g(< p).
Suppose S is the sample covariance matrix based on n iid samples drawn
from the population. Denote the eigenvalues of S by 01 > 09 > --- > ay.
Then the test statistic for the hypothesis Hy : rank(X,;) = ¢ against H; :
rank(X,) > ¢ is given by

1 P 1 P
2
T __q of — _q E : a;
! Jj=q+1 I Jj=g+1

(Tq U'q 2
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