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Preface to the Russian Edition

The constructions of Volume 1 proceeded on the basis of utilizing a few
fundamental spaces: (1) the space K of infinitely differentiable functions
having compact supports; (2) the space S of infinitely differentiable
functions decreasing at infinity, together with all their derivatives, more
rapidly than any power of 1/| x |; (3) the space Z of analytic functions
¢(z), satisfying inequalities of the form z¥ep(z) < Cre®'¥!. Generalized
functions—continuous linear functionals on these spaces—were adequate
for the clarification of the fundamental features of the theory and for a
number of simple, but important, applications to some questions of
analysis, and in particular, to the theory of differential equations.

On the other hand, although we tried there to reduce to a minimum
the number of spaces utilized, we did not succeed in bypassing one pair
of spaces K and K’: by considering generalized functions as continuous
linear functionals in K, we inevitably had to consider their Fourier
transforms as continuous linear functionals on Z. The advantages of
such a viewpoint will be seen particularly clearly in Volume 5, where
methods of complex variable function theory will render substantial
assistance in algorithmic questions of the theory of generalized functions.

We shall need a considerably more extensive circle of spaces in Volume 3,
which is devoted to deeper applications of the theory of generalized
functions to differential equations, than those which we encountered
periodically in Volume 1, and will meet here and there in Volume 2.
Namely, applications of the theory of generalized functions to the Cauchy
problem and to the problem of eigenfunction expansions will be elucidated
in Volume 3. Here, the fundamental peculiarity of the theory of generalized
functions, in that form in which we shall understand it in this book, will
be completely apparent; it is that different classes of problems require
different classes of spaces, and, indeed classes of spaces and not individual
spaces.

Thus, uniqueness and existence theorems for the solution of the Cauchy
problem for different partial differential equations require different spaces,

v



vi PREFACE TO THE RUSSIAN EDITION

which however possess some common properties. Problems of eigen-
function expansions for different differential operators also require
different spaces which, nevertheless, have a number of common features.
And similarly, boundary value problems for elliptic equations require
their class of fundamental spaces and spaces of generalized functions.

In the preceding stage of development of functional analysis, which
was connected with the theory of integral equations, the common base
for the study of the various functional spaces encountered was the theory
of linear normed spaces.*

Normed spaces turned out to be inadequate for the needs of the theory
of generalized functions. It must not be thought that the situation is
such that much more complex constructions would be required. It is
directly opposite: among the normed spaces one does not find the simplest
spaces, for example the spaces K and S possessing a whole series of
essential properties.

In recent years the general theory of linear topological spaces has
developed considerably. However, the most general linear topological
spaces are rather complicated objects possessing a whole set of “patho-
logical” properties, and are poorly adapted to the needs of the analyst.?
The basis of the theory of generalized functions is the theory of the so-
called countably normed spaces (with compatible norms), their unions
(inductive limits), and also of the spaces conjugate to the countably normed
ones or their unions. This set of spaces is sufficiently broad on the one
hand, and sufficiently convenient for the analyst on the other.

The theory of these spaces is expounded in Chapter I. Let us note that
since the countably normed spaces are very close to normed spaces,
a number of important theorems is obtained almost automatically by
taking them over from the normed spaces into the countably normed
spaces.* In reading this chapter it should be kept in mind that some of
the theorems proved here are actually valid for more general spaces.

In the majority of questions the class of all countably normed spaces
turns out to be too broad for the theory of generalized functions. Hence,

* However, even during this period works appeared which anticipated going beyond
the limits of this class of spaces, the work of Kothe-Toeplitz and Kothe on spaces of
sequences in the 30’s, and also the work of Mazur and Orlicz.

t To the analyst it is natural to use estimates, not neighborhoods, which he inevitably
reduces to some kind of estimates.

# Before reading this chapter it would be useful for the reader not acquainted with
the theory of normed spaces to read the first three chapters, say, of the book “Elements
of Functional analysis™ by L. A. Lyusternik and V. 1. Sobolev, Ungar, New York, 1961
or the first volume of the lectures ‘‘Elements of the Theory of Functions and Functional
Analysis” by A. N. Kolmogorov and S. V. Fomin, Moscow University Press, Moscow,
USSR, 1954.
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in Chapter I we study the so-called perfect spaces (complete countably
normed spaces in which the bounded sets are compact). The reader will
meet a great number of examples of such spaces in the following chapters.

The reader will also find material referring to the general theory of
countably normed spaces in the first three sections of Chapter IV in
Volume 3.

The expounded viewpoint certainly excludes the possibility of an
a priori description of all classes of spaces which may be encountered in
connection with various problems of the theory of generalized functions:
As we have already said above, each class of problems requires its own
class of spaces. Therefore, essentially two classes of spaces are introduced
and studied in Chapters II and IV: spaces of the type K{M,} in Chapter II;
spaces of the type S and similar spaces of type W in Chapter IV. The
spaces of type S and W essentially satisfy the demands of Chapters Il
and III of Volume 3 (the Cauchy problem), and spaces of type K{M,}
the requirements of Chapter IV of Volume 3 (the problem of eigenfunction
expansions). Chapter 11, and, in part, Chapter III, of the present volume
are devoted primarily to transferring the results of Chapters 1 and II of
Volume 1, almost without any difficulty, to more general spaces. The
spaces K{M,}, which are natural illustrations of the general theory,
appear here. On the other hand, the results of Chapter I permit the filling
in of a whole series of essential gaps, in particular, the proof of the
completeness of spaces of generalized functions on K, and the establish-
ment of a number of new results, concerning for example the structure
of generalized functions.

The theory of spaces of type S is discussed in the last Chapter IV.
These spaces which, as we have said already, are used in Volume 3 possess
great internal orderliness, and we hope that even their independent
study will give the analyst some satisfaction. The construction and
utilization of these spaces is connected with results of the theory of
quasi-analytic functions and the Phragmen-Lindel6f theorem. Applica-
tions of these spaces to the Cauchy problem in Volume 3 will illustrate
the well-known statement of Hadamard on the relation between unique-
ness theorems in the Cauchy problem on the one hand, and the theory of
quasi-analytic functions and the general theory of functions of a complex
variable, on the other. Spaces of type S yield natural limits for a sufficiently
flexible Fourier transform theory because these spaces go over into each
other under Fourier transformation; hence, Chapter IV is a natural
continuation of Chapter III, devoted to Fourier transforms. Moreover,
various operators of the form f(d/dx), where f(¢) is an entire function, can
be constructed in spaces of type S, and are also applicable to generalized
functions. The Fourier transforms of generalized functions, considered
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as continuous linear functionals on spaces of type S and W, as well as
the construction of operators of the form f(d/dx), applicable to the
generalized functions, are indeed the fundamental tools which we shall
use in Volume 3 for studying the Cauchy problem.

In order not to overburden the exposition here, we have referred
a summary of the results referring to spaces of type W to an appendix;
proofs of these results are collected in Chapter I of Volume 3. The reader
interested only in problems of eigenfunction expansions may turn to
Chapter IV of Volume 3 directly after having completed Chapters I
and II of the present volume.

The authors take this opportunity to express their heartfelt gratitude to
all their colleagues who assisted in writing this volume. To D. A. Raikov
we owe a number of essential improvements in the first chapter. B. Ya.
Levin constructed the proof of some necessary theorems from the theory
of entire functions (Chapter [V) at our request. G. N. Zolotarev indicated
some simplifications in the exposition of Chapters Il and III. The section
on the Hilbert transform (Chapter I11) was written according to an idea
of N. Ya. Vilenkin. Finally, a multitude of improvements has been inserted
in accordance with suggestions of M. S. Agranovich, who edited the
entire text of this volume.

Moscow, 1958 I. M. GEL’FAND
G. E. SHIiLOV
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CHAPTER |

LINEAR TOPOLOGICAL SPACES

1. Definition of a Linear Topological Space!

1.1. System of Axioms for a Linear Topological Space

A collection @ of elements ¢, ¢, ... is called a linear topological space if
the following conditions are fulfilled:

I. @ is a linear space with multiplication by (real or) complex
numbers.
Il. @ is a topological space.

IIl. The operations of addition and multiplication by numbers are
continuous relative to the topology of .

Let us consider each of these conditions in detail.

I. The collection D is a linear space with multiplication by complex
numbers.

This means that an operation of addition of elements in @, and an
operation of multiplying elements by (complex) numbers A, y, ... is
defined, and the following axioms are fulfilled:

1.1. ¢ + ¢ = ¢ + ¢ (addition is commutative),
1.2. ¢ + (Y + x) = (p + ¢¥) + x (addition is associative);
1.3.  There is an element O such that ¢ + 0 = ¢ for any ¢;

1.4. For every element @, there is an element s such that ¢ + = 0
(the negative element);

1.5. 1-¢ = ¢ for any ¢ € D;
1.6. Alpe) = (Aw)e;

! Since Section 1 is of a preparatory nature, the reader who is familiar with the definition
of a linear topological space can proceed directly to Section 2, and return to Section 1
when necessary.

1



2 LINEAR TOPOLOGICAL SPACES Ch. 1

L7. A+ pe = A9 + ue;
1.8. Alp + ¢) = Ap + A

Axiom 1.6 denotes the associativity of multiplication by numbers;
Axioms I.7 and 1.8 express two laws of distributivity related to addition
and multiplication by numbers.

It can be deduced, in turn, from Axioms I.1-1.8 that the product of
0 with any element ¢ is the element 0, and that the product of the
number — 1 with any element ¢ is the negative of ¢, which is therefore
naturally denoted by —¢.

We present some simple definitions pertaining to linear spaces.

The collection of all sums ¢ + ¢, where ¢ ranges over a set 4 in
the linear space @, is called the translate of the set A by the vector .

The collection of all sums ¢ + ¢, where ¢ ranges over a set A, and
iy ranges over a set B, is called the sum (more precisely, the arithmetic
sum) of the sets A and B, and is denoted by A + B. The arithmetic
difference A — B 1s defined analogously.

The collection of all products of the elements ¢ of a set 4 by a number
A is called the A-tuple (or A-dilation) of the set A and is denoted by AA4.
(We remark that in general 24 # 4 + A.) In particular, — A4 is the
collection of all the negatives of elements in 4.

Il.  The collection D is a topological space.

This means that a system {U} of subsets of @, called (open) neigh-
borhoods, is specified, and the following axioms are satisfied:

1. Every point ¢ € @ belongs to some neighborhood U = U(p);

11.2. If a point ¢ belongs to neighborhoods U and V, then it belongs
to a neighborhood W which lies entirely in the intersection of U with V;

I1.3. For any pair of points ¢ # i, there is some neighborhood U
which contains @ but does not contain .

The neighborhoods and all of their unions (finite and infinite) form
the system of open sets. An open set is characterized by the fact that
every one of its points is an interior point, i.e., it belongs to a neighborhood
which lies in the given set. It is easy to obtain from this that the union
of any number of open sets and the intersection of any finite number of
open sels are open sets.

Henceforth, by a neighborhood of a given point we will understand
any neighborhood containing the point.

A point g, is called an adherence point of a set A, if every neighborhood
of @, contains a point of 4. In particular, every point of a set 4 is an
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adherence point of A. There are two possibilities for adherence points
of a set A:

1. There exists a neighborhood of ¢, which contains only a finite
number of distinct points of 4;

2. Every neighborhood of ¢, contains an infinite number of distinct
points of A4.

In the first case, using Axioms II.2 and II.3, one can construct a
neighborhood of ¢, which contains no point of 4 other than ¢, itself.
In this case ¢, belongs to 4, and is called an isolated point of A.

In the second case ¢, is called a limit point of A. An isolated adherence
point of 4 always belongs to 4; a limit point may or may not belong to 4.

The collection of all adherence points of A forms the closure A of A;
thus, the closure of a set 4 is obtained by adjoining to A those of its
limit points which do not belong to it.

A set A is said to be closed if it contains all of its adherence points.
One can verify that the closure of any set is closed. The closed sets
can be characterized as the complements (with respect to all of @) of
the open sets. It follows that the union of a finite number of closed
sets and the intersection of any number of closed sets are closed sets.

A set A is said to be dense in the space @ (more precisely, everywhere
dense) if its closure coincides with @. Example: the set of rational points
on the line.

A set is said to be nowhere dense, if its closure has no interior point.
Example: the Cantor set on the line.

The collection of all open and all closed sets of a space @ forms its
topology.

One can arrive at the same topology in a space (i.e., the same system
of open and closed sets), starting from two different systems of neigh-
borhoods. For example, in defining the natural topology on the real line
we can, on the one hand, take as neighborhoods all intervals with
rational endpoints and, on the other hand, all intervals with irrational
endpoints. We will call different systems of neighborhoods eguivalent,
if they lead to the same topology. The following simple condition is
both necessary and sufficient for the equivalence of two given neigh-
borhood systems {U} and {V'}: Every neighborhood U contains a neigh-
borhood V, and every neighborhood V contains a neighborhood U.

Convergent Sequences. A sequence ¢, , @5 ,..., @, ,... of elements of a
topological space @ is said to converge to an element ¢, if each neigh-
borhood of ¢ contains all the points of the sequence, starting with some
given one whose index in general depends upon the neighborhood.
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In this case, one writes ¢ = lim, ., @, . On the line (or in m-dimensional
space), every limit point of a given set A is the limit of some convergent
sequence of points belonging to A. The assumption, natural at first
glance, that in the general case also, every limit point of a set 4 must
be the limit of some (countable) sequence ¢, € 4 (v = 1, 2,...) turns
out, under closer examination, to be false.

Example. Let us consider the collection @ of (all) bounded real
functions ¢@(x) on the interval 0 << x << 1, with the ordinary linear
operations; we define a neighborhood U = U(gp, ; %, ,..., X, ; €) of a
given element ¢ = @(x) by specifying a finite number of points x, ,..., x,
and a number € > 0; this neighborhood consists of all ¢ € @ for which
| p(x;) — @o(%;)] < €, = 1,..., n. We form the set 4 of functions ¢(x),
each of which equals 1 everywhere, with the exception of a finite number
of points at which it equals 0. Obviously, @o(x) = 0 is an adherence
point of A. At the same time, no (countable) sequence of elements
{¥,(x)} of A can converge to zero, since, in view of the uncountability
of the continuum 0 < x < 1, one can always find a point x, at which
all of the ¢,(x) equal I, and consequently no one of them lies within any
neighborhood of the form U(g, ; x, ; 3)-

Of course, it would be very helpful in analysis if any limit point ¢,
of every set A were always the limit of some sequence of points of 4.
This property holds in topological spaces in which an additional con-
dition is satisfied:

The first axiom of countability at a point ¢,. The point ¢, has a
countable neighborhood basts.

A system {U} of neighborhoods U, , U, ,... of ¢, is said to be a basis of
the neighborhoods of ¢, , if every neighborhood V' of ¢, contains at least
one of the U,.

Let us show that if the first axiom of countability is satisfied at a point ¢, ,
then from any set A which has ¢ as a limit point, it is possible to select a
sequence @, , @, ,... which converges to ¢, .

First we note that we can always consider a countable neighborhood
basis to be decreasing, so that U; D U, D ---; indeed, if this condition
is not fulfilled, then in place of U,, we take a neighborhood U, lying
in the intersection of U, and U, ; in place of U, , we take a neighborhood
U, lying in the intersection of U, and U,, and so on. Let us now
assume that ¢, is an adherence point of some set 4. We choose a point
@, € A in each neighborhood U, (assuming that U, D U, D ---); then

po = limg,.

v
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Indeed, for any neighborhood V of ¢,, there is some neighborhood
U,CV,andsince U,,, C U,, it follows that ¢,, , € U,,,, C V for any p;
thus, any neighborhood of ¢, contains all the points ¢, , ¢, ,... starting
with some one, as was required.

If the first axiom of countability is fulfilled at every point of the
space @, then one says that it is fulfilled everywhere in ®.

We now proceed to condition III.

WI. The operations of addition and multiplication by a number are
continuous relative to the topology of ®.

Conditions I and II, which we have considered in detail just above,
described separate properties of the linear operations and the operation
of passing to a limit; condition III establishes the connection between
these. Condition III may be divided into the following two axioms.

WA, The continuity of addition and subtraction. If one of the relations

‘Po:f:‘/’o:Xo

holds, then for any neighborhood U of y, there is a neighborhood V of ¢,
and a neighborhood W of s, such that o € V and y € W imply ¢ + e U
(or, briefly, V 4= W C U).

H1.2. The continuity of multiplication by a number. If Ayp, = i,
then for any neighborhood U of i, there is a neighborhood V of ¢, and
a number € > 0 such that p e V and | X — A, | < e imply Ap € U.

Let us first consider some consequences of Axiom III.1.

First of all, we note that the collection of all translates of all the neigh-
borhoods of O defines a system of neighborhoods in @ which is equivalent
to the original system. Indeed, that this collection is actually a collection
of neighborhoods (i.e., satisfies II1.1-11.3) is easy to show. To see that
this system is equivalent to the original system of neighborhoods,
let V = ¢, + U, where U i1s a neighborhood of 0. If ¢ € IV, then
@ — @€ U. Thus we can find neighborhoods W, and W, of ¢ and ¢,
respectively, such that W, — W, C U. In particular, since ¢, W, ,
we have W, — ¢, C U, or W,Cg¢,+ U = V. Conversely, given a
neighborhood U of a point ¢,, since ¢, + 0 = ¢,, we can find a
neighborhood W,; (of ¢,) and a neighborhood W, (of 0) such that
W, + W,C U. Since ¢,€ W,, we have V = ¢, + W, C U, as was
required.

Thus, the topology in © can be reconstructed from the system of neigh-
borhoods of zero; subjecting them to all possible translations, we obtain
a complete system of neighborhoods for the entire space. This means
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that from the topological point of view, the structure of the space is
the same at all points; a simple translation (taking the entire space onto
itself) carries any point into any other, and every neighborhood of the
first point is carried into a neighborhood of the second. The local
properties of the topology of the space at one point are the same as at
every other point. In particular, if the first axiom of countability is
fulfilled at one point, for example at 0, then it is fulfilled at every other
point, i.e., it is fulfilled over the entire space.

We remark, further, that a linear topological space is always regular,
i.e., for any point ¢ and neighborhood U of ¢ there is a smaller neigh-
borhood V of ¢ which lies in U, together with its closure.

For the proof it is sufficient, in view of the homogeneity of the
topology in @, to consider the case ¢ = 0. In view of the continuity
of subtraction, we can find two neighborhoods W, and W, of 0 such
that W, — W, C U, and if we further take a neighborhood W of 0 lying
in the intersection of W, and W,, then we will have W — W C U.
We assert that the closure W of W lies in U.

In fact, let ¢ be an adherence point of W; then the neighborhood
V = ¢ + W of the point ¢ contains some point of W. Suppose that
x€V N W, so that y = ¢y + ¢, where p € W. Then

p=x—peW —-WCU,
as was asserted.

Let us now turn to those properties of linear topological spaces which
are related to the continuity of multiplication by a number. (Axiom III.2.)

First of all, we shall show that any dilation AU, A % 0 of an open
set U is an open set. Indeed, let y = Ap, where ¢ € U; then ¢ = (1/A)
and, given a neighborhood V of ¢, we can find a neighborhood W of
Y such that (I A) WCV, or WCAV. Taking V C U, we see that
W CAV C AU, i.e., the point ¢ lies in AU together with its neighborhood
W, as was required.

In particular, every dilation AU, A = 0 of a neighborhood U of
zero is a neighborhood of zero, and if A # 0 is fixed, then the collection
of sets of the form AU, where U ranges over a basis of the neighborhoods
of zero, is itself a basis of the neighborhoods of zero. It is sufficient
to show that for any neighborhood V' of zero, one can find a set U
in the basis of the neighborhoods of zero for which AU C V. But the
existence of such a U follows at once from the continuity of multiplication
by A and the definition of a neighborhood basis.

We can use the neighborhoods of the form AU to construct certain
special systems of neighborhoods of zero, called normal neighborhoods.



