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Preface

Representation theory of Lie algebras, quantum groups and algebraic groups
represent a major area of mathematical research in the twenty-first century with
numerous applications in other areas of mathematics (geometry, number theory,
combinatorics, finite and infinite groups, etc.) and mathematical physics (such as
conformal field theory, statistical mechanics, integrable systems). Current research
topics in representation theory include quantized enveloping and function algebras,
Kac-Moody Lie algebras, Hecke algebras, canonical bases and crystal bases, vertex
operator algebras, Hall algebras, A..-algebras, quivers, cluster algebras, Hopf al-
gebras, and Artin-Schelter regular algebras. In particular, representation theory of
quantized Kac-Moody Lie algebras and cohomological theories in noncommutative
algebraic geometry have taken the lead not only within research areas in algebra
but also in other areas of mathematics and physics.

There are various approaches to study representation theory. This proceed-
ings is based on two conferences which focused on the algebraic and combinatorial
approaches to the representation theory.

The first conference was held at the National Institute of Advanced Studies,
Bangalore, India during August 12-16, 2010. This was a satellite conference pre-
ceding the International Congress of Mathematicians held at Hyderabad, India.
The second follow-up conference was held at the University of California, Riverside
during May 18-20, 2012. The speakers at each of these conferences were invited to
contribute to this proceedings.

The articles in this proceedings touch upon a broad spectrum of topics including
quantum groups, crystal bases, categorification, toroidal algebras, vertex algebras,
Hecke algebras, Kazhdan-Lusztig bases, etc.

We thank all participants and speakers at both of these conferences for their
participation and valuable contributions. In particular we thank the speakers who
contributed to this proceedings volume. We are grateful to the National Science
Foundation, USA and the International Center for Theoretical Sciences, India for
providing the financial support for these conferences. Finally, we appreciate the help
from the National Institute of Advanced Studies, Bangalore and the University of
California, Riverside during the respective conferences.

The Editors






Contents

Preface vii

Kostka systems and exotic t-structures for reflection groups
PramoD N. AcHAR : 1

The doublet vertex operator superalgebras A(p) and A3,
DRAZEN ADAMOVIC AND ANTUN MILAS 23

Quantum deformations of irreducible representations of GL(mn) toward the
Kronecker problem
BHARAT ADSUL, MILIND SOHONI, AND K. V. SUBRAHMANYAM 39

A parametric family of subalgebras of the Weyl algebra I1. Irreducible modules
GEORGIA BENKART, SAMUEL A. LoPES, AND MATTHEW ONDRUS 73

Generic extensions and composition monoids of cyclic quivers
BANGMING DENG, JIE DU, AND ALEXANDRE MAH 99

Wedge modules for two-parameter quantum groups
NAIHUAN JING, LIL1 ZHANG, AND MING Liu 115

Blocks of the truncated ¢-Schur algebras of type A
ANDREW MATHAS AND MARCOS SORIANO 123

Decorated geometric crystals, polyhedral and monomial realizations of crystal
bases

TosHIKI NAKASHIMA 143
A survey of equivariant map algebras with open problems

ERHARD NEHER AND ALISTAIR SAVAGE 165
Simplicity and similarity of Kirillov-Reshetikhin crystals

MASATO OKADO 183

Forced gradings and the Humphreys-Verma conjecture
BRIAN J. PARSHALL AND LEONARD L. ScorT 195






Contemporary Mathematics
Volume 602, 2013
http://dx.doi.org/10.1090/conm/602/12031

Kostka systems and exotic {-structures for reflection groups

Pramod N. Achar

ABSTRACT. Let W be a complex reflection group, acting on a complex vector
space . Kato has recently introduced the notion of a “Kostka system,” which
is a certain collection of finite-dimensional W-equivariant modules for the sym-
metric algebra on h. In this paper, we show that Kostka systems can be used
to construct “exotic” t-structures on the derived category of finite-dimensional
modules, and we prove a derived-equivalence result for these t-structures.

1. Introduction

1.1. Overview. In the early 1980’s, Shoji [S1,S2] and Lusztig [L3] showed
that Green functions—certain polynomials arising in the representation theory of
finite groups of Lie type—can be computed by a rather elementary procedure, now
often known as the Lusztig-Shogi algorithm. This algorithm can be interpreted as
a computation in the Grothendieck group of the derived category of mixed ¢-adic
complexes on the nilpotent cone of a reductive algebraic group, with the simple
perverse sheaves playing a key role; see [A3].

In recent work [K1|, Kato has proposed an alternative interpretation of Green
functions in terms of the Grothendieck group of the (derived) category of graded
modules over the ring Ay = C[W] # C[h*], where W is the Weyl group, and b is
the Cartan subalgebra. In place of simple perverse sheaves, the key objects are now
projective Ay -modules. Thus, Kato'’s viewpoint is “Koszul dual” to the geometric
one. A prominent place is given to certain collections of finite-dimensional Ayy-
modules (denoted by K, in [K1] and by V, here), called Kostka systems.

In this paper, we study Kostka systems as generators of the derived category
D}’d(Aw) of finite-dimensional A y/-modules. We prove that they form a dualizable
quasi-exceptional sequence, which implies that they determine a new {-structure
on D&(Aw), called the ezxotic t-structure. The heart of this ¢-structure, denoted
by Exw, is a finite-length weakly quasi-hereditary category. The main result (see
Theorem 6.9) states that there is an equivalence of triangulated categories

(1.1) DPExw = DR(Aw).

Of course, projective A -modules cannot belong to Exw, since they are not finite-
dimensional. Nevertheless, in some ways, they behave as though they were tilting
objects of Ezy. Thus, in a loose sense, which we do not attempt to make precise

2010 Mathematics Subject Classification. Primary 20F55, 18E30.
The author received support from NSF Grant DMS-1001594.

©2013 American Mathematical Society



2 PRAMOD N. ACHAR

geometric Langlands duality Springer theory
perverse sheaves on the affine Grass- | perverse sheaves on the nilpotent cone
mannian of G; geometric Satake of Gi; Springer correspondence

G x Gy-equivariant coherent sheaves on | graded Ay -modules, or W x G,-equi-
the dual Lie algebra g variant coherent sheaves on b

coherent sheaves supported on the dual | finite-dimensional Ay-modules, or co-
nilpotent cone N C g herent sheaves supported on {0} C b

Andersen—Jantzen sheaves on N Kostka systems {V, }

exotic (or perverse-coherent) t-structure | exotic t-structure on DE]( Aw)
on DPCoh®*C= (AT

TABLE 1. Geometric Langlands duality and Springer theory

in this paper, the category £z can be thought of as “Ringel dual” to the category
of Ay~modules. (See Section 6.3.)

1.2. Analogy with geometric Langlands duality. A theme arising in geo-
metric Langlands duality is that perverse or constructible sheaves on a (partial)
affine flag variety for a reductive group G should be described in terms of coherent
sheaves on varieties related to the dual group G. For instance, the spherical equi-
variant derived category of the affine Grassmannian Gr is closely related to coherent
sheaves on the dual Lie algebra g; see [BF].

Springer theory is a rich source of phenomena that seem to be “shadows at
the level of the Weyl group” of geometric Langlands duality. Indeed, the Springer
correspondence itself is in part a Weyl-group shadow of the geometric Satake equiv-
alence [AH, AHR]. Another example is Rider’s equivalence [Rid] relating the equi-
variant derived category of the nilpotent cone to Ay--modules, or, equivalently, to
W-equivariant coherent sheaves on the dual Cartan subalgebra h: this resembles
the aforementioned result of [BF]. Further parallels are summarized in Table 1.

Kato’s results and those of the present paper are contributions to the study
of the “Galois side” (or “coherent side”) of this picture. Among (complexes of)
coherent sheaves on g, those supported on the dual nilpotent cone N are of partic-
ular importance, especially those in the heart of an exotic t-structure determined
by the so-called Andersen-Jantzen sheaves [B1,B2]. The Weyl-group analogue
should involve sheaves supported on {0} C h—in other words, finite-dimensional
Ay -modules. Specifically, Kostka systems should be thought of as Weyl-group
analogues of Andersen—Jantzen sheaves, and the equivalence (1.1) as a Weyl-group
shadow of the derived equivalences from [B2] or [A4, Theorem 1.2].

1.3. Green functions for complex reflection groups. The Lusztig-Shoji
algorithm itself only requires knowing the reflection group W and the preorder 3
on Irr(W) induced by the Springer correspondence. (See [Al].) In particular, it
makes sense to carry out the algorithm with a different, “artificial” preorder, or
even with W replaced by a complex reflection group that is not the Weyl group
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of any algebraic group. See [S3,S4, GM] for variations and conjectures on the
Lusztig-Shoji algorithm. .

One of Kato’s aims in [K1] was to provide a categorical framework for inter-
preting the output of the algorithm in this more general setting, where geometric
tools like perverse sheaves are not available. In the present paper, we try to preserve
this goal. Most definitions and constructions in this paper make sense for arbitrary
complex reflection groups and arbitrary preorders on Irr(W). We do invoke some
results of Kato whose proofs involve the geometry of the nilpotent cone, and are
thus valid only for Weyl groups. However, outside of Section 4, we treat these
results as axioms: if, in the future, non-geometric proofs of these results become
available for other complex reflection groups, then the main results of this paper
will extend to those complex reflection groups as well.

1.4. Acknowledgments. The author is grateful to Syu Kato for a number
of helpful comments. This paper has, of course, been deeply influenced by his
ideas. I would also like to thank the organizers of the ICM 2010 satellite conference
on Algebraic and Combinatorial Approaches to Representation Theory for having
given me the opportunity to participate.

2. Notation and preliminaries

2.1. Graded rings and vector spaces. If R is a noetherian graded C-
algebra, we write R-gmod (resp. R-gmody,) for the category of finitely-generated
(resp. finite-dimensional) graded left R-modules. For any M € R-gmod, we write
gr, V for its k-th graded component. We define M (1) to be the new graded module
with

gri(M(1)) = gry_y M.
The operation M +— M (1) also makes sense for chain complexes of modules over
R. If M and N are (complexes of) graded R-modules, we define Homp(M, N) (or
simply Hom(M, N)) to be the graded vector space given by

gr, Homp (M, N) = Hom(M, N(—k)).

We use the term grade to refer to the integers k such that gr; M # 0, reserving
the term degree for homological uses, such as indexing the terms in a chain complex.
Thus, a module M is said to have grades > n if gr, M = 0 for all k < n. If M is
a chain complex of modules, we say that M has grades > n if all its cohomology
modules H*(M) have grades > n.

If M and N are objects in a derived category of R-modules, we employ the usual
notation Hom'(M, N) = Hom(M, N[i]), as well as Hom"(M, N) = Hom(M, N[i]).

2.2. Reflection groups and phyla. Throughout the paper, W will be a
fixed complex reflection group, acting on a finite-dimensional complex vector space
h. Let Sh be the symmetric algebra on b, regarded as a graded ring by declaring
elements of h C Sh to have degree 1. Our main object of study is the ring

An' = C[["V] # Sb

Let Ay -gmod be the category of finitely-generated graded Aw-modules. Hence-
forth, all Ay -modules are assumed to be objects of Ay-gmod.

Let Irr(W) denote the set of irreducible complex characters of W. For x €
Irr(W), let X denote the complex-conjugate character. If W is a Coxeter group,
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then all characters are real-valued, and y = y, but general complex reflection groups
may have characters that are not real-valued.

We also assume throughout that Irr(W) is equipped with a fixed total preorder
=, and that the equivalence relation ~ induced by this preorder satisfies

X~ X
for all x € Irr(W). (In [K1], a preorder satisfying this condition is said to be
of Malle type. Many arguments in this paper can likely be adapted to the case
where this condition is dropped, but these generalizations will not be pursued here.)

Following [A1], the equivalence classes for ~ are called phyla. For x € Irr(W), we
write [x] for the phylum to which it belongs.

2.3. Aw-modules. For each x € Irr(W), choose a representation L, giving
rise to that character. Consider the vector space

Py =Ly ®Sh.

We regard this as a graded Ay -module by having Sh act on the second factor,
and having W act on both factors. This is a projective Ay -module, and every
indecomposable projective in Ay -gmod is of the form P, (n) for some y and some n.
See [K1, Lemma 2.2].

For brevity, we write D®(Ay) rather than D"(Aw-gmod) for the bounded
derived category of Ay -gmod, and likewise for D~ (A ) and D (Aw).

We will occasionally need to consider groups

(2.1) Hom(M, N) with M € D" (Aw) and N € D™ (Aw).

This is to be understood by identifying DT (Ay,) and D~ (A ) with full subcate-
gories of the unbounded derived category D(Ay ). Because Ay has finite global
dimension, we can ignore some of the technical difficulties that usually arise with
unbounded derived categories. In particular, according to [AF, Proposition 3.4],
complexes of projective modules in D(Ay/) are homotopy-projective. Moreover,
every object in D*(Ay) is isomorphic to a bounded-below complex of projectives;
see [AF, §1.6]. Thus, if M and N are both given by explicit complexes of projec-
tives, then (2.1) is simply the set of homotopy classes of chain maps between those
complexes.

2.4. Duality. For M € Sh-gmod, the graded vector space Homgy, (M, Sh) can
naturally be regarded as an object of Sh-gmod itself. It is well known that the
derived functor D = RHomg; (—, Sh) gives an equivalence of categories D~ (Sh)°P =
D*(Sh); see [H, Example V.2.2]. Moreover, D) takes bounded complexes to bounded
complexes, and so gives an antiautoequivalence of DP(Sh).

Now, suppose that M € Aw-gmod. Then the Sh-module Homg, (M, Sh) carries
an obvious W-action, and so can be regarded as an object of Ay -gmod. From the
facts above about ID, one can deduce the W-equivariant analogues: there is an
equivalence of categories

D = RHomgy (—,Sh) : D™ (Aw)? 5 DT (Aw)
that restricts to an equivalence D(Aw )°® = DP(Aw). In particular, we have

(2.2) D(P,) = P;.
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2.5. Finite-dimensional modules. As noted in the introduction, the main
results of this paper involve the category

D (Aw) = {X € D*(Aw) for all ¢, H*(X) is a }

finite-dimensional A --module

We will occasionally make use of the fact that this is equivalent to the derived
category DP(Aw-gmody,). That fact is an instance of the following lemma.

LEMMA 2.1. Let R = @nzo R,, be a nonnegatively graded noetherian C-algebra,
and assume that Ry is finite-dimensional. Then the natural functor

DP(R-gmod,,) — D"(R-gmod)
is fully faithful.

ProoF. We begin with a digression. Since R is noetherian and Ry is finite-
dimensional, each R, must be finite-dimensional. It follows that for any M €
R-gmod, each gr, M is finite-dimensional. Now, given k € Z, let M>, C M
be the submodule generated by all homogeneous elements of grade > k, and let
Mcy = M/M>p41. It is easy to see that the functors M — My and M M<y
are exact. Moreover, M« is always finite-dimensional.

Returning to the statement of the lemma, recall that by a standard argument
(see [BBD, Proposition 3.1.16]), the question can be reduced to showing that the
following natural morphism of §-functors (for A, B € R-gmody,) is an isomorphism:

(23) EXt;?-gmodm (A B) - EXt%—gmod (A‘ B)

When ¢ = 0, this is obvious, and for ¢ = 1, this follows from the fact that R-gmodg,
is a Serre subcategory of R-gmod. _

For general i > 0, each element of Extp ,...4(A, B) is represented by some
exact sequence

(2.4) 0B-sM s M1 5...oM 5 A0

Since A and B are finite-dimensional, there is a k such that A>py1 = B>y = 0.
Applying the exact functor M — M<y to (2.4) gives an exact sequence

(2.5) 0= B— My - MG == ML — A= 0.

This represents the same element of Eth?-gmod(/L B) as (2.4), but since every term
is finite-dimensional, it also represents an element of Ext’kvgmodm(A, B). We have
just shown that (2.3) is surjective for all 7.

According to [BBD, Remarque 3.1.17(1)], if (2.3) failed to be an isomorphism
for some 7, then for a minimal such 7, it would be injective but not surjective.
So (2.3) is indeed an isomorphism for all i. O

2.6. Admissible subcategories of triangulated categories. We conclude
this section with a review of a result from homological algebra that we will use a
number of times in the sequel.

DEFINITION 2.2. Let D be a triangulated category, and let A and B be two full
triangulated subcategories. We say that (A, B) is an admissible pair if the following
two conditions hold:

(1) We have Hom(A, B) = 0 whenever A € A and B € B.
(2) Together, the objects in A and B generate D as a triangulated category.
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This is slightly nonstandard terminology: usually, A is said to be right-admis-
sible if there exists a B such that the conditions above hold; dually, B is said to
be left-admissible. The following lemma collects some consequences and equivalent
characterizations.

LEMMA 2.3 ([BK, Propositions 1.5 and 1.6]). Let (A, B) be an admissible pair
in a triangulated category D. Then:

(1) The inclusion A — D admits a right adjoint v : D — A.
(2) The inclusion B — D admits a left adjoint j: D — B.
(3) For every X € D, there is a functorial distinguished triangle

1X) > X = (X)) —.

(4) We have A= {X € D | Hom(X,B) =0 for all B € B}.
(5) We have B={X € D |Hom(A,X) =0 for all A € A}.
(6) The inclusions A — D and B — D induce equivalences of triangulated

categories
A= D/B and B> D/A.

Note, in particular, that each of A and B determines the other.

3. Triangulated subcategories associated to a phylum
Given a phylum f, we define a full subcategory of D~ (Aw ) as follows:

X is isomorphic to a bounded-above
D™ (Aw)<f =4 X € D" (Aw) | complex M*® where each M" is a direct
sum of various P, (n) with [y] < f

We will also consider the “strict” version D~ (A )¢, as well as the analogous
subcategories of DP(Ay) and D (Ay). It follows from (2.2) that

(31) DD (Aw)<¢) =D (Aw)<e and  D(D°(Aw)<¢) = D*(Aw)<e.
In addition, we have
D°(Aw)<¢ = D™ (Aw)<¢ N D°(Aw) = D" (Aw)<e N D°(Aw).

The first of these holds by a routine homological-algebra argument for bounded-
above complexes of projectives over a ring with finite global dimension. The second
equality follows from the first using (3.1).

In this section, we first construct a collection of objects in D~ (Ay,) and
Dt (Aw) with various Hom-vanishing properties related to the categories defined
above. Then, under the additional assumption that these objects lie in DP(Ay),
we prove structural results for that category in the spirit of Lemma 2.3.

3.1. Construction of V, and A,. We begin with the following result.
PROPOSITION 3.1. For each x € Irr(W), there is an object Vy € D™ (Aw)
together with a morphism s : P, — ¥V, with the following properties:

(1) The cone of s lies in D™ (Aw) <[y
(2) For M € D™ (Aw)<jy or DT (Aw)<y, we have Hom(M,V,) = 0.

Moreover, the pair (Vy,s) is unique up to unique isomorphism.
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Proor. Given a module M € Ay-gmod, let M) be the Ay -submodule
generated by all the homogeneous W-stable subspaces that are isomorphic to some
Ly (m) with ¢ < x. Of course, My is actually generated by a finite number of
such subspaces. Thus, there is a surjective map M’ — M [x]: Where M’ is a direct
sum of finitely many objects of the form P, (n) with 1) < .

We now define a complex (N®, d*) inductively as follows. Let N* =0 for i > 0,
and let N° = P,. Then, assuming that N’ and d' : N* — N'+! have already
been defined for i > j, let us apply the construction of the preceding paragraph
to M = kerd’+t! ¢ NI3t!. Set N7 = M’, and then let & : N9 — NI+l be the
composition

N7 — (kerdj+1)<[x] — Nj_H.

Let Vy = (N*®,d®). There is an obvious morphism s : P, — V,. Its cone is
isomorphic to the complex obtained from (N*, d®) by omitting N°. By construction,
the N for i < 0 are direct sums of Py (n) with 1) < x, so it is clear that the cone
of s lies in D™ (Aw ) <[y]-

For M € D~ (Aw)<[y given by a suitable bounded-above complex of projec-
tives, it is a routine exercise in homological algebra to show that any map M — V,,
is null-homotopic. On the other hand, if M € D+ (Aw)<[y] is given by a bounded-
below complex of projectives, let M’ be the subcomplex obtained by omitting the
terms in degrees < 1, and form a distinguished triangle M’ — M — M" —. Then
M" lies in DP (A )<(y- It is clear that Hom(M’, V) = Hom(M[1], V,) = 0, and
thus Hom(M, V) = Hom(M"”,V,) = 0 as well.

Finally, suppose s’ : P, — V) were another morphism with the same proper-
ties, and let C’ be its cone. Since Hom(C[-1],V/) = 0, the map s’ factors through
s, and then the last assertion follows by a standard argument. O

REMARK 3.2. In the construction above, it is easy to see by induction that
the complex (N*®,d*) representing V, can be chosen such that each nonzero N7 is
generated in grades > —j > 0. It follows that V, has grades > 0.

PROPOSITION 3.3. For each x € Irr(W), there is an object Ay € DT (Aw)
together with a morphism t : A, — P, with the following properties:
(1) The cone of t lies in DV (Aw ) <[y
(2) For M € D™ (Aw)<py or DT (Aw)<(y, we have Hom(A,, M) = 0.

Moreover, the pair (Ay,t) is unique up to unique isomorphism.

PRrOOF. Let A, = D(Vy), and let ¢t = D(s) : A, — Py. It follows from (2.2),
(3.1), and Proposition 3.1 that (A,,t) has the required properties. O

COROLLARY 3.4. (1) If x # 1, then Hom®(A,, Vy) =0.
(2) Ifi >0, then Hom"(A,Vy) =0 for all x, 7.

PROOF. The first assertion follows from Propositions 3.1(2) and 3.3(2). For
the second, observe that by construction, V,, is isomorphic to a complex of pro-
jectives in nonpositive degrees, so Ay, is isomorphic to a complex of projectives in
nonnegative degrees. The result then follows by the remarks after (2.1). O

3.2. Admissible subcategories of D*(Ay). For the remainder of this sec-
tion, we impose the additional assumption that all the A, and Vy lie in DP(Aw).
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With this assumption, it makes sense to consider the following full triangulated
subcategories of D°(Aw):

DP(Ayw )¢ = the triangulated subcategory generated by the V, (n) with x € f,
DP(Aw)f = the triangulated subcategory generated by the A, (n) with x € f.

We will see below that these two categories are equivalent. It often happens that
the V, are easier to work with explicitly than the A, so this equivalence will be
useful for transferring facts about the former to the setting of the latter.

PROPOSITION 3.5. For each phylum f, Db(Aur’)ff is generated as a triangu-
lated category by the V(n) (resp. the A (n)) with [x] < f.

Proor. This follows by induction on f with respect to the order on the set of
phyla, using the distinguished triangle P, — V, — C' — with C € D*(Ay)<e. O

In the case of the V,, this statement can be refined a bit. Recall from Re-
mark 3.2 that V, has grades > 0. It follows that in the distinguished triangle
Py — V, — C —, the object C has grades > 0. By keeping track of grades in
the induction, one can see that each P, is contained in the triangulated category
generated by the V, (k) with & > 0. We have just shown that part (2) in the
corollary below implies part (3). (Note, in contrast, that the A, do not, in general,
have grades > 0.)

COROLLARY 3.6. The following conditions on an object M € DP(Ayw) are

equivalent:

(1) M has grades > n.

(2) M is isomorphic to a complex of projective Ay -modules each term of
which has grades > n.

(3) M lies in the triangulated subcategory generated by the Vy (k) with k > n.

Proor. We saw above that (2) implies (3). It is a routine exercise to see
that (1) implies (2), and Remark 3.2 tells us that (3) implies (1). O

COROLLARY 3.7. Each of the two pairs of categories (D®(Aw)s, D*(Aw)<¢)
and (DP(Aw )¢, DP(Aw)f) is an admissible pair in D®(Aw )<s.
ProoF. This follows from Propositions 3.1(2), 3.3(2), and 3.5. O

The next two results are just restatements of parts (4)-(6) of Lemma 2.3.

PROPOSITION 3.8. Let £ be a phylum, and let M € D°(Ayw). The following
three conditions are equivalent:
(1) M e Db(Avv).d‘.
(2) Hom®*(M,Vy) =0 for all x with [x] = f.
(3) Hom®* (A, M) =0 for all x with [x] = f. O

LEMMA 3.9. The inclusion functors D*(Aw)s — DP(Aw) and DP(Aw)f —
D"(Aw) induce equivalences of categories

DP(Aw)r = D°(Aw)<¢/DP(Aw)<s < DP(Aw)". O
Let us denote the composition of these two equivalences by

(32) Tf i Db(AW)f :) Db(Aur)f.



