21

EDITED BY

A

£

1 W

P

-
b=

_
o

THE ESSENTIAL

The Essential Turing

Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life
plus The Secrets of Enigma

Edited by B. Jack Copeland

CLARENDON PRESS - OXFORD

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford 0x2 6pp

Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal
Singapore Switzerland Thailand Turkey Ukraine Vietnam

Published in the United States
by Oxford University Press Inc., New York

© In this volume the Estate of Alan Turing 2004
Supplementary Material © the several contributors 2004
The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,

or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above.

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer.
British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data
Data available

ISBN 0-19-825079-7
ISBN 0-19-825080-0 (pbk.) ; 978-0-19-825080-7 (pbk.)

Typeset by Kolam Information Services Pvt. Ltd, Pondicherry, India
Printed in Great Britain
on acid-free paper by Biddles Ltd., King’s Lynn, Norfolk

Acknowledgements

Work on this book began in 2000 at the Dibner Institute for the History of
Science and Technology, Massachusetts Institute of Technology, and was com-
pleted at the University of Canterbury, New Zealand. I am grateful to both these
institutions for aid, and to the following for scholarly assistance: John Andreae,
Friedrich Bauer, Frank Carter, Alonzo Church Jnr, David Clayden, Bob Doran,
Ralph Erskine, Harry Fensom, Jack Good, John Harper, Geoff Hayes, Peter
Hilton, Harry Huskey, Eric Jacobson, Elizabeth Mahon, Philip Marks, Elisabeth
Nordliffe, Rolf Noskwith, Gualtiero Piccinini, Andrés Sicard, Wilfried Sieg, Frode
Weierud, Maurice Wilkes, Mike Woodger, and especially Diane Proudfoot. This
book would not have existed without the support of Turing’s literary executor,
P. N. Furbank, and that of Peter Momtchiloff at Oxford University Press.

B.J.C.

10.

Contents

Alan Turing 1912-1954
Jack Copeland

Computable Numbers: A Guide
Jack Copeland

. On Computable Numbers, with an Application to the

Entscheidungsproblem (7936)

. On Computable Numbers: Corrections and Critiques

Alan Turing, Emil Post, and Donald W. Davies

. Systems of Logic Based on Ordinals (7938), including

excerpts from Turing’s correspondence, 1936-1938
Letters on Logic to Max Newman (c.7940)

Enigma

Jack Copeland

History of Hut 8 to December 1941 (7945), featuring an
excerpt from Turing’s ‘Treatise on the Enigma’
Patrick Mahon

Bombe and Spider (7940)
Letter to Winston Churchill (7947)

Memorandum to OP-20-G on Naval Enigma (c.7947)

Artificial Intelligence
Jack Copeland

Lecture on the Automatic Computing Engine (71947)

Intelligent Machinery (7948)

58

91

125

205

217

265

313

336

341

353

362

395

viii | Contents

1.
12.
13.

14.

15.

16,

17.

Computing Machinery and Intelligence (7950)
Intelligent Machinery, A Heretical Theory (¢.79517)
Can Digital Computers Think? (7957)

Can Automatic Calculating Machines Be Said to Think? (7952)

Alan Turing, Richard Braithwaite, Geoffrey Jefferson,
and Max Newman

Artificial Life
Jack Copeland

The Chemical Basis of Morphogenesis (7952)

Chess (1953)

Solvable and Unsolvable Problems (7954)

Index

433

465

476

487

507

519

562

576

397

Alan Turing 1912-1954
Jack Copeland

Alan Mathison Turing was born on 23 June 1912 in London!; he died on 7
June 1954 at his home in Wilmslow, Cheshire. Turing contributed to logic,
mathematics, biology, philosophy, cryptanalysis, and formatively to the areas
later known as computer science, cognitive science, Artificial Intelligence, and
Artificial Life.

Educated at Sherborne School in Dorset, Turing went up to King’s College,
Cambridge, in October 1931 to read Mathematics. He graduated in 1934, and in
March 1935 was elected a Fellow of King’s, at the age of only 22. In 1936 he
published his most important theoretical work, ‘On Computable Numbers, with
an Application to the Entscheidungsproblem [Decision Problem]’ (Chapter 1,
with corrections in Chapter 2). This article described the abstract digital com-
puting machine—now referred to simply as the universal Turing machine—on
which the modern computer is based. Turing’s fundamental idea of a universal
stored-programme computing machine was promoted in the United States by
John von Neumann and in England by Max Newman. By the end of 1945 several
groups, including Turing’s own in London, were devising plans for an electronic
stored-programme universal digital computer—a Turing machine in hardware.

In 1936 Turing left Cambridge for the United States in order to continue his
research at Princeton University. There in 1938 he completed a Ph.D. entitled
‘Systemns of Logic Based on Ordinals’, subsequently published under the same
title (Chapter 3, with further exposition in Chapter 4). Now a classic, this work
addresses the implications of Godel’s famous incompleteness result. Turing gave
a new analysis of mathematical reasoning, and continued the study, begun in ‘On
Computable Numbers, of uncomputable problems—problems that are ‘too
hard’ to be solved by a computing machine (even one with unlimited time and
memory).

Turing returned to his Fellowship at King’s in the summer of 1938. At the
outbreak of war with Germany in September 1939 he moved to Bletchley Park,
the wartime headquarters of the Government Code and Cypher School (GC &
CS). Turing’s brilliant work at Bletchley Park had far-reaching consequences.

! At 2 Warrington Crescent, London W9, where now there is a commemorative plaque.

2 | Jack Copeland

‘I won’t say that what Turing did made us win the war, but I daresay we might
have lost it without him) said another leading Bletchley cryptanalyst.2 Turing
broke Naval Enigma—a decisive factor in the Battle of the Atlantic—and was the
principal designer of the ‘bombe’ a high-speed codebreaking machine. The
ingenious bombes produced a flood of high-grade intelligence from Enigma. It
is estimated that the work done by Turing and his colleagues at GC & CS
shortened the war in Europe by at least two years.3 Turing’s contribution to
the Allied victory was a state secret and the only official recognition he
received, the Order of the British Empire, was in the circumstances derisory.
The full story of Turing’s involvement with Enigma is told for the first time
in this volume, the material that forms Chapters 5, 6, and 8 having been
classified until recently.

In 1945, the war over, Turing was recruited to the National Physical Labora-
tory (NPL) in London, his brief to design and develop an electronic digital
computer—a concrete form of the universal Turing machine. His design (for
the Automatic Computing Engine or ACE) was more advanced than anything
else then under consideration on either side of the Atlantic. While waiting for the
engineers to build the ACE, Turing and his group pioneered the science of
computer programming, writing a library of sophisticated mathematical pro-
grammes for the planned machine.

Turing founded the field now called ‘Artificial Intelligence’ (AI) and was a
leading early exponent of the theory that the human brain is in effect a digital
computer. In February 1947 he delivered the earliest known public lecture to
mention computer intelligence (‘Lecture on the Automatic Computing Engine’
(Chapter 9)). His technical report ‘Intelligent Machinery’ (Chapter 10), written
for the NPL in 1948, was effectively the first manifesto of AL Two years later, in
his now famous article ‘Computing Machinery and Intelligence’ (Chapter 11),
Turing proposed (what subsequently came to be called) the Turing test as a
criterion for whether machines can think. The Essential Turing collects together
for the first time the series of five papers that Turing devoted exclusively to
Artificial Intelligence (Chapters 10, 11, 12, 13, 16). Also included is a discussion
of Al by Turing, Newman, and others (Chapter 14).

In the end, the NPLs engineers lost the race to build the world’s first working
electronic stored-programme digital computer—an honour that went to the
Computing Machine Laboratory at the University of Manchester in June 1948,
The concept of the universal Turing machine was a fundamental influence on the
Manchester computer project, via Newman, the project’s instigator. Later in

2 Jack Good in an interview with Pamela McCorduck, on p. 53 of her Machines Who Think (New York:
W. H. Freeman, 1979).

* This estimate is given by Sir Harry Hinsley, official historian of the British Secret Service, writing on
P- 12 of his and Alan Stripp’s edited volume Codebreakers: The Inside Story of Bletchley Park (Oxford: Oxford
University Press, 1993).

Alan Turing 1912-1954 | 3

1948, at Newman’s invitation, Turing took up the deputy directorship of the
Computing Machine Laboratory (there was no Director). Turing spent the rest of
his short career at Manchester University. He was elected a Fellow of the Royal
Society of London in March 1951 (a high honour) and in May 1953 was
appointed to a specially created Readership in the Theory of Computing at
Manchester.

It was at Manchester, in March 1952, that he was prosecuted for homosexual
activity, then a crime in Britain, and sentenced to a period of twelve months’
hormone ‘therapy’—the shabbiest of treatment from the country he had helped
save, but which he seems to have borne with amused fortitude.

Towards the end of his life Turing pioneered the area now known as Artificial
Life. His 1952 article “The Chemical Basis of Morphogenesis’ (Chapter 15)
describes some of his research on the development of pattern and form in living
organisms. This research dominated his final years, but he nevertheless found
time to publish in 1953 his classic article on computer chess (Chapter 16) and in
1954 ‘Solvable and Unsolvable Problems’ (Chapter 17), which harks back to ‘On
Computable Numbers’. From 1951 he used the Computing Machine Labora-
tory’s Ferranti Mark I (the first commercially produced electronic stored-pro-
gramme computer) to model aspects of biological growth, and in the midst of
this groundbreaking work he died.

Turing’s was a far-sighted genius and much of the material in this book is of
even greater relevance today than in his lifetime. His research had remarkable
breadth and the chapters range over a diverse collection of topics—mathematical
logic and the foundations of mathematics, computer design, mechanical
methods in mathematics, cryptanalysis and chess, the nature of intelligence
and mind, and the mechanisms of biological growth. The chapters are united
by the overarching theme of Turing’s work, his enquiry into (as Newman put it)
‘the extent and the limitations of mechanistic explanations’4

Biographies of Turing

Gottfried, T., Alan Turing: The Architect of the Computer Age (Danbury, Conn.; Franklin
Watts, 1996).

Hodges, A., Alan Turing: The Enigma (London: Burnett, 1983).

Newman, M. H. A., ‘Alan Mathison Turing, 1912-1954’, Biographical Memoirs of Fellows of
the Royal Society, 1 (1955), 25363,

Turing, S., Alan M. Turing (Cambridge: W. Heffer, 1959).

* M. H. A. Newman, ‘Alan Mathison Turing, 1912-1954’, Biographical Memoirs of Fellows of the Royal
Society, 1 (1955), 25363 (256).

Computable Numbers: A Guide
Jack Copeland

Part | The Computer

. Turing Machines 6

. Standard Descriptions and Description Numbers 10
. Subroutines 12

. The Universal Computing Machine 15

. Turing, von Neumann, and the Computer 21

. Turing and Babbage 27

. Origins of the Term ‘Computer Programme’ 30

Part Il Computability and Uncomputability
8. Circular and Circle-Free Machines 32
9. Computable and Uncomputable Sequences 33
10. Computable and Uncomputable Numbers 36
11. The Satisfactoriness Problem 36
12. The Printing and Halting Problems 39
13. The Church-Turing Thesis 40
14. The Entscheidungsproblem 45

NV R W N -

‘On Computable Numbers, with an Application to the Entscheidungsproblem’
appeared in the Proceedings of the London Mathematical Society in 1936.! This,

U Proceedings of the London Mathematical Society, 42 (1936-7), 230—65. The publication date of ‘On
Computable Numbers’ is sometimes cited, incorrectly, as 1937. The article was published in two parts, both
parts appearing in 1936. The break between the two parts occurred, rather inelegantly, in the middle of
Section 5, at the bottom of p. 240 (p. 67 in the present volume). Pages 230—40 appeared in part 3 of volume
42, issued on 30 Nov. 1936, and the remainder of the article appeared in part 4, issued on 23 Dec. 1936. This
information is given on the title pages of parts 3 and 4 of volume 42, which show the contents of each part
and their dates of issue. (I am grateful to Robert Soare for sending me these pages. See R. I. Soare,
‘Computability and Recursion) Bulletin of Symbolic Logic, 2 (1996), 284-321.)

The article was published bearing the information ‘Received 28 May, 1936—Read 12 November, 1936.
However, Turing was in the United States on 12 November, having left England in September 1936 for what
was 10 be a stay of almost two years (see the introductions to Chapters 3 and 4). Although papers were read
at the meetings of the London Mathematical Society, many of those published in the Proceedings were ‘taken
as read), the author not necessarily being present at the meeting in question. Mysteriously, the minutes of the
meeting held on 18 June 1936 list ‘On Computable Numbers, with an Application to the Entscheidungs-
problem’ as one of 22 papers taken as read at that meeting. The minutes of an Annual General Meeting held

6 | jack Copeland

Turing’s second publication,? contains his most significant work. Here he pion-
eered the theory of computation, introducing the famous abstract computing
machines soon dubbed ‘Turing machines’ by the American logician Alonzo
Church.? ‘On Computable Numbers’ is regarded as the founding publication
of the modern science of computing. It contributed vital ideas to the develop-
ment, in the 1940s, of the electronic stored-programme digital computer. ‘On
Computable Numbers’ is the birthplace of the fundamental principle of the
modern computer, the idea of controlling the machine’s operations by means
of a programme of coded instructions stored in the computer’s memory.

In addition Turing charted areas of mathematics lying beyond the scope of the
Turing machine. He proved that not all precisely stated mathematical problems
can be solved by computing machines. One such is the Entscheidungsproblem or
‘decision problem’. This work—together with contemporaneous work by Churcht
——initiated the important branch of mathematical logic that investigates and
codifies problems ‘too hard’ to be solvable by Turing machine.

In this one article, Turing ushered in both the modern computer and the
mathematical study of the uncomputable.

Part | The Computer

1. Turing Machines

ATuring machine consists of a scanner and a limitless memory-tape that moves
back and forth past the scanner. The tape is divided into squares. Each square
may be blank or may bear a single symbol—‘0’ or ‘1), for example, or some other
symbol taken from a finite alphabet. The scanner is able to examine only one
square of tape at a time (the ‘scanned square’).

The scanner contains mechanisms that enable it to erase the symbol on the
scanned square, to print a symbol on the scanned square, and to move the tape to
the left or right, one square at a time.

In addition to the operations just mentioned, the scanner is able to alter what
Turing calls its ‘m-configuration’. In modern Turing-machine jargon it is usual to

on 12 Nov. 1936 contain no reference to the paper. (I am grateful to Janet Foster, Archives Consultant to the
London Mathematical Society, for information,)

* The first was ‘Equivalence of Left and Right Almost Periodicity, Journal of the London Mathematical
Society, 10 (1935), 284-5.

3 Church introduced the term “Turing machine’ in a review of Turing’s paper in the Journal of Symbolic
Logic, 2 (1937), 42-3.

* A. Church, ‘An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics,
58 (1936), 345-63, and ‘A Note on the Entscheidungsproblem, Journal of Symbolic Logic, 1 (1936), 40-1.

Computable Numbers: A Guide | 7

SCANNER

use the term ‘state’ in place of ‘m-configuration’. A device within the scanner is
capable of adopting a number of different states (m-configurations), and the
scanner is able to alter the state of this device whenever necessary. The device
may be conceptualized as consisting of a dial with a (finite) number of positions,
labelled ‘@) b} ‘C} etc. Each of these positions counts as an m-configuration or
state, and changing the m-configuration or state amounts to shifting the dial’s
pointer from one labelled position to another. This device functions as a simple
memory. As Turing says, ‘by altering its m-configuration the machine can
effectively remember some of the symbols which it has “seen” (scanned) previ-
ously’ (p. 59). For example, a dial with two positions can be used to keep a record
of which binary digit, 0 or 1, is present on the square that the scanner has just
vacated. (If a square might also be blank, then a dial with three positions is
required.)

The operations just described—erase, print, move, and change state—are
the basic (or atomic) operations of the Turing machine. Complexity of operation
is achieved by chaining together large numbers of these simple basic actions.
Commercially available computers are hard-wired to perform basic operations
considerably more sophisticated than those of a Turing machine—add, multiply,
decrement, store-at-address, branch, and so forth. The precise list of basic
operations varies from manufacturer to manufacturer. It is a remarkable fact,
however, that despite the austere simplicity of Turing’s machines, they are
capable of computing anything that any computer on the market can compute.
Indeed, because they are abstract machines, with unlimited memory, they are
capable of computations that no actual computer could perform in practice.

Example of a Turing machine

The following simple example is from Section 3 of ‘On Computable Numbers’
(p. 61). The once-fashionable Gothic symbols that Turing used in setting out the
example—and also elsewhere in ‘On Computable Numbers’—are not employed
in this guide. I also avoid typographical conventions used by Turing that seem
likely to hinder understanding (for example, his special symbol ‘o’ which he used
to mark the beginning of the tape, is here replaced by I’).

The machine in Turing’s example—call it M—starts work with a blank tape.
The tape is endless. The problem is to set up the machine so that if the scanner is

8 | Jack Copeland

positioned over any square of the tape and the machine set in motion, the scanner
will print alternating binary digits on the tape, 01010 1. .., working to the right
from its starting place, and leaving a blank square in between each digit:

In order to do its work, M makes use of four states or m-configurations. These
are labelled ‘@) b} ‘c} and ‘d’ (Turing employed less familiar characters.) M is in
state a when it starts work.

The operations that M is to perform can be set out by means of a table with four
columns (Table 1). ‘R’ abbreviates the instruction ‘reposition the scanner one
square to the right’ This is achieved by moving the tape one square to the left. ‘U
abbreviates ‘reposition the scanner one square to the left’, ‘P[0] abbreviates ‘print
0 on the scanned square’, and likewise ‘P[1}’. Thus the top line of Table 1 reads: if
you are in state a and the square you are scanning is blank, then print 0 on the
scanned square, move the scanner one square to the right, and go into state b.

A machine acting in accordance with this table of instructions—or pro-
gramme—toils endlessly on, printing the desired sequence of digits while leaving
alternate squares blank.

Turing does not explain how it is to be brought about that the machine acts in
accordance with the instructions. There is no need. Turing’s machines are
abstractions and it is not necessary to propose any specific mechanism for
causing the machine to act in accordance with the instructions. However, for
purposes of visualization, one might imagine the scanner to be accompanied by a
bank of switches and plugs resembling an old-fashioned telephone switchboard.
Arranging the plugs and setting the switches in a certain way causes the machine
to act in accordance with the instructions in Table 1. Other ways of setting up the
‘switchboard’ cause the machine to act in accordance with other tables of
instructions. In fact, the earliest electronic digital computers, the British Colossus
(1943) and the American ENIAC (1945), were programmed in very much this
way. Such machines are described as ‘programme-controlled’, in order to distin-
guish them from the modern ‘stored-programme’ computer.

Table 1

State Scanned Square Operations Next State

blank P{O}, R b
blank R [
blank P[1],R d
blank R a

an oe

Computable Numbers: A Guide | 9

As everyone who can operate a personal computer knows, the way to set up a
stored-programme machine to perform some desired task is to open the appro-
priate programme of instructions stored in the computer’s memory. The stored-
programme concept originates with Turing’s universal computing machine,
described in detail in Section 4 of this guide. By inserting different programmes
into the memory of the universal machine, the machine is made to carry out
different computations. Turing’s 1945 technical report ‘Proposed Electronic
Calculator’ was the first relatively complete specification of an electronic
stored-programme digital computer (see Chapter 9).

E-squares and F-squares

After describing M and a second example of a computing machine, involving the
start-of-tape marker ‘!’ (p. 62), Turing introduces a convention which he makes
use of later in the article (p. 63). Since the tape is the machine’s general-purpose
storage medium—serving not only as the vehicle for data storage, input, and
output, but also as ‘scratchpad’ for use during the computation—it is useful to
divide up the tape in some way, so that the squares used as scratchpad are
distinguished from those used for the various other functions just mentioned.

Turing’s convention is that every alternate square of the tape serves as scratch-
pad. These he calls the ‘E-squares), saying that the ‘symbols on E-squares will be
liable to erasure’ (p. 63). The remaining squares he calls ‘F-squares’. (‘E’ and ‘F’
perhaps stand for ‘erasable’ and ‘fixed’)

In the example just given, the ‘F-squares’ of M’s tape are the squares bearing
the desired sequence of binary digits, 0 1 0 1 0 1... In between each pair of
adjacent F-squares lies a blank E-square. The computation in this example is so
simple that the E-squares are never used. More complex computations make
much use of E-squares.

Turing mentions one important use of E-squares at this point (p. 63): any
F-square can be ‘marked’ by writing some special symbol, e.g. ‘+’, on the E-square
immediately to its right. By this means, the scanner is able to find its way back to
a particular string of binary digits—a particular item of data, say. The scanner
locates the first digit of the string by finding the marker ‘¥’,

Adjacent blank squares

Another useful convention, also introduced on p. 63, is to the effect that the tape
must never contain a run of non-blank squares followed by two or more adjacent
blank squares that are themselves followed by one or more non-blank squares,
The value of this convention is that it gives the machine an easy way of finding
the last non-blank square. As soon as the machine finds two adjacent blank
squares, it knows that it has passed beyond the region of tape that has
been written on and has entered the region of blank squares stretching away
endlessly.

10 | Jack Copeland

The start-of-tape marker

Turing usually considers tapes that are endless in one direction only. For pur-
poses of visualization, these tapes may all be thought of as being endless to the
right. By convention, each of the first two squares of the tape bears the symbol 1,
mentioned previously. These ‘signposts’ are never erased. The scanner searches
for the signposts when required to find the beginning of the tape.

2. Standard Descriptions and Description Numbers

In the final analysis, a computer programme is simply a (long) stream, or row, of
characters. Combinations of characters encode the instructions. In Section 5 of
‘On Computable Numbers’ Turing explains how an instruction table is to be
converted into a row of letters, which he calls a ‘standard description’. He then
explains how a standard description can be converted into a single number. He
calls these ‘description numbers’.

Each line of an instruction table can be re-expressed as a single ‘word’ of the
form q;5;5xMq;. q; is the state shown in the left-hand column of the table. §; is
the symbol on the scanned square (a blank is counted as a type of symbol). S; is
the symbol that is to be printed on the scanned square. M is the direction of
movement (if any) of the scanner, left or right. q, is the next state. For example,
the first line of Table 1 can be written: a-ORb (using ‘-’ to represent a blank). The
third line is: c-1Rd.

The second line of the table, which does not require the contents of the
scanned square (a blank) to be changed, is written: b--Rc. That is to say we
imagine, for the purposes of this new notation, that the operations column of the
instruction table contains the redundant instruction P[-]. This device is
employed whenever an instruction calls for no change to the contents of the
scanned square, as in the following example:

State Scanned Square Operations Next State
d x L c

It is imagined that the operations column contains the redundant instruction
P[x], enabling the line to be expressed: dxxLc.
Sometimes a line may contain no instruction to move, For example:

State Scanned Square Operations Next State
d * P[1] [

The absence of a move is indicated by including ‘N’ in the instruction-word:
d*1Nc.

Sometimes a line may contain an instruction to erase the symbol on the
scanned square. This is denoted by the presence of ‘E’ in the ‘operations’ column:

Computable Numbers: A Guide | 11

State Scanned Square Operations Next State
m * E,R n

Turing notes that E is equivalent to P[-]. The corresponding instruction-word is
therefore m*-Rn.

Any table of instructions can be rewritten in the form of a stream of instruc-
tion-words separated by semicolons.5 Corresponding to Table 1 is the stream:

a-ORb; b--Rc; ¢-1Rd; d--Ra;

This stream can be converted into a stream consisting uniformly of the letters
A, C, D, L, R, and N (and the semicolon). Turing calls this a standard description
of the machine in question. The process of conversion is done in such a way that
the individual instructions can be retrieved from the standard description.

The standard description is obtained as follows. First, ‘- is replaced by ‘D’ ‘0’
by ‘DC,, and ‘1’ by ‘DCC’ (In general, if we envisage an ordering of all the
printable symbols, the nth symbol in the ordering is replaced by a ‘D’ followed by
n repetitions of ‘C’) This produces:

aDDCRb; bDDR¢; <cDDCCRd; dDDRa;

Next, the lower case state-symbols are replaced by letters. ‘a’ is replaced by ‘DA
‘D’ by ‘DAA, ‘¢’ by ‘DAAA;, and so on. An obvious advantage of the new notation is
that there is no limit to the number of states that can be named in this way.

The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

Notice that occurrences of ‘D’ serve to mark out the different segments or
regions of each instruction-word. For example, to determine which symbol an
instruction-word says to print, find the third ‘D’ to the right from the beginning
of the word, and count the number of occurrences of ‘C’ between it and the next
D to the right.

The standard description can be converted into a number, called a description
number. Again, the process of conversion is carried out in such a way that the
individual instructions can be retrieved from the description number. A standard
description is converted into a description number by means of replacing each ‘A’
by ‘15 ‘C’ by 2} ‘D’ by ‘3 ‘L’ by 4} ‘R’ by ‘5, ‘N’ by ‘6, and %’ by 7. In the case of
the above example this produces:

31332531173113353111731113322531111731111335317.6

5 There is a subtle issue concerning the placement of the semicolons. See Davies’s ‘Corrections to Turing’s
Universal Computing Machine’, Sections 3, 7, 10.

s Properly speaking, the descripion number is not the string 313325311731133531117311133225
31111731111335317, but is the number denoted by this string of numerals.

